Содержание
- Расчет тепловых потерь помещения
- Методика расчета
- Выбираем материал изготовления труб, их диаметр
- Как рассчитать мощность: инструкция
- Программы для расчета характеристик
- Управляющие компоненты
- Расчет в Excel теплопотерь через пол и стены, примыкающие к грунту по общепринятой зональной методике В.Д. Мачинского.
- Расчет тепловых потерь в MS Excel через пол и стены, примыкающие к грунту по методике профессора А.Г. Сотникова.
- Замечания и выводы.
- P. S. (25.02.2016)
- Параметры для расчета теплового контура
- Оценка технических свойств при выборе труб
- Возможные способы укладки контура
- Методика расчета труб
- Конкретный пример расчета отопительной ветки
- Выводы и полезное видео по теме
Классический водяной теплый пол — система отопления, которая может, частично (до 30%), разгрузить систему радиаторного отопления или полностью ее заменить, если тепловой мощности теплого пола будет достаточно для компенсации теплопотерь помещения.
Калькулятор расчета параметров теплого водяного пола
Температура подачи, oC. Температура обратки, oC. Шаг трубы, м. Труба Напольное покрытие Толщина стяжки над трубой, cм. Удельная тепловая мощность, Вт/м2 Температура поверхности пола (средняя), oC Удельный расход теплоносителя, (л/ч)/м2
Онлайн калькулятор для расчета удельной тепловой мощности, удельного расхода теплоносителя и температуры поверхности теплого водяного пола.
Принцип работы системы водяного теплого пола довольно прост. В качестве теплоносителя используют горячую воду. Она течет по специальной гибкой трубе, которая вмонтирована вместо радиаторов отопления на поверхность пола. Источником горячей воды может служить либо газовый котел, либо система центрального отопления. За счет подогреваемой воды, которая циркулирует в системе водяной теплый пол, тепло распространяется снизу вверх равномерно. Поэтому в помещении нет африканских зон или плохо прогреваемых участков.
Равномерное распределение тепла, помимо комфорта, позволяет использовать более низкие температуры теплоносителя. Температура в комнате может быть снижена на 2°C по сравнению с традиционными радиаторами, без изменения в ощущении тепла человеком. Снижение температуры на 2°C обеспечивает снижение энергопотребления на 12%.
Типы водяных теплых полов:
- Бетонная система. Самая распространенная на сегодняшний день система водяного теплого пола, в которой трубы контуров заливаются бетоном и дополнительных распределителей тепла не требуется.
- Настильная (полистирольная) система. Основу данной системы составляют полистирольные пластины с пазами, в которые вкладываются алюминиевые пластины, а затем и труба. Толщина полистирола может варьироваться от 12 до 30 мм. Сегодня также существуют разработки тонких систем для площадей малого диаметра, высотой 8 мм.
Поскольку водяной тёплый пол чаще всего применяется как система отопления, он используется практически с любым видом чистового покрытия, за исключением теплоизоляционных материалов таких как пробка, ковролин и утеплённый линолеум, но при невысоких отопительных нагрузках возможно применение и вышеуказанных материалов.
Термины: водяной пол, теплый водяной пол, удельная тепловая мощность, температура, удельный расход теплоносителя, теплоноситель, теплопотери
Было ли это полезно?
ДаНет
Сегодня для многих эквивалентом уюта и комфорта в помещении стал теплый водяной пол. Расчет его, как залог эффективной работы, зависит в основном от схемы, по которой система будет работать. Как известно, водяной пол может стать источником основного обогрева дома либо вспомогательным, чтобы обеспечить больший комфорт в помещении.
Напольное отопление дает возможность теплу одинаково распределяться по помещению – от пола до потолка, причем разница в температуре, как правило, составляет 2-4⁰С. Какой вариант отопления не предполагалось установить, необходим точный расчет теплого пола. Это связано с тем, что любая ошибка, допущенная при проектировании может обернуться массой неудобств и значительной потерей времени, так как непременно придется вскрывать стяжку.
Расчет тепловых потерь помещения
Работа любой системы отопления направлена на поддержание комфортной температуры в помещении. Поэтому на первом этапе необходимо рассчитать тепловые потери комнаты (здания). При этом учитывается наличие основной системы отопления.
Правильная методика расчета теплого пола основана на определении тепловых потерь через наружные конструкции — стены и окна. Для предварительного расчета будут взяты именно они. Для этого понадобится значение коэффициента сопротивления теплопередачи материалов, из которых изготовлены конструкции.
Предположим, что необходимо поддерживать температуру в помещении 25°С с учетом максимально низкой на улице – 35 °С. Наружная стена изготовлена из кирпича и ее толщина составляет 0,38 м. Тепловые потери рассчитываются по следующей формуле:
q=S*(tв — tн)*R
Где q – тепловые потери, Вт.
S – площадь отапливаемого помещения, м².
tв tн — температура в помещении и на улице, °С.
R – коэффициент сопротивления теплопередачи, м²*К/Вт.
Для комнаты общим объемом 50 м³ они составят:
q=50*(25-(-35)*0,43=1290 Вт
При наличии основного радиаторного отопления большая часть этих потерь будет компенсироваться им – порядка 60%. Следовательно, для комнаты площадью 20 м² необходим расчет теплоотдачи теплого пола с минимальным показателем 1290*0,4= 516 Вт. Учитывая среднюю теплоемкость 80 Вт/м², можно вычислить, что для поддержания требуемой температуры нужно установить трубы на площадь около 6 м².
Совет Также нужно знать, что оптимальная температура поверхности теплого пола должна составлять 30°С.
Методика расчета
Когда единственным источником тепла был выбран теплый водяной пол, расчет выполнить точно будет весьма непросто. Причина в следующем – при таком выборе приходится учитывать немало нюансов, включая нормативные документы, а также требуемые материалы. К тому для подобных расчетов необходима достаточно высокая степень технической грамотности, ведь от нее зависит качество полученной системы обогрева, а также финансовые затраты на ее устройство, текущее обслуживание и эксплуатацию. Во втором варианте, то есть установке системы дополнительного обогрева решить рассчитать ее не составит особого труда.
Схематически данную конструкцию можно описать, как магистраль трубопровода, помещенную между черновым полом и его покрытием. Таким образом, создание подобной конструкции сводится к укладке между основой и финишным покрытием трубной магистрали, по которой циркулирует теплоноситель. Она состоит из ряда компонентов:
- теплоизоляционного слоя;
- нагревательных труб;
- коллекторов и шкафа;
- запорной арматуры;
- дополнительных элементов, используемых при присоединении конструкции к центральному отоплению, типа фитингов и крепежей.
Для расчета теплоотдачи должны быть собраны необходимые данные, в том числе о помещении. В частности, это касается:
- вида и площади помещения;
- запланированной температуры;
- уровня теплопотерь;
- типа покрытия пола.
Есть также несколько факторов, которые, возможно, могут показаться незначимыми, тем не менее они способны существенно отразиться на итоговых результатах расчетов, то есть теплоотдача водяного теплого пола окажется недостаточной. В расчетах принимают во внимание
- этажность помещения – находится ли помещение на первом или и последнем этаже;
- объем застекления, например, – эркер, балкона или эркера;
- степень теплоизоляции – балкон, помещение с тонкими стенами;
- некоторые особенности напольного материала – достаточная толщина либо высокий уровень теплоемкости.
Совет В подобных случаях мощность системы обогрева должна быть увеличена и, как правило, возникается необходимость теплотехнического расчета.
Особое внимания требуют помещения с дощатыми либо паркетными полами. Это необходимо из-за низкой теплопроводности древесины в условиях стандартных значений удельной мощности, которая не позволяет получить требуемую температуру поверхности пола.
Выбираем материал изготовления труб, их диаметр
Важным этапом является выбор материала изготовления труб и их диаметр. Чаще всего используют конструкции из сшитого полиэтилена с воздухонепроницаемой защитной оболочкой.
Они обладают хорошим показателем теплопроводности, достаточно прочны и гибки, что немаловажно для монтажа. Диаметр зависит от расчетной теплоемкости – при максимальном размере будет большая теплоотдача. Однако при этом следует учитывать, что теплоноситель будет остывать быстрее, чем в трубах меньшего диаметра. Для средней площади нагрева одного контура 20 м² можно выбрать трубу с сечением 16 мм.
Как рассчитать мощность: инструкция
- Расчет мощности начинается с самого простого – подготовки плана помещения, на котором отмечены места расположения дверей и окон.
На заметку Проще всего его чертить на миллиметровке, тем более , что рекомендованный масштаб равен 10 мм : 0,5 м.
Шаг и диаметр труб. Максимальный КПД будет обеспечен только при выполнении определенных правил:
- наибольшая площадь обогрева равна 20 кв. м., поэтому в больших помещениях укладывают два контура при обязательном условии подключения к отдельному отводу;
- максимальная длина трубопровода одного круга контура составляет 100 м.
- Основные участки теплопотерь в помещении находятся в районе окон и дверей. Это обязательно учитывается при размещении трубопровода – трубу, которая отходит от стояка проводят по направлению окна. Далее, необходимо обеспечить отступ проложенных труб от стен на 20–25 см. Шаг, с которым укладывают трубы в контуре варьируется между 35 и 50 см. Выбор конкретного шага зависит от таких параметров, как диаметр и тип трубы. Получить количество требуемых для монтажа труб довольно просто: длину по чертежу перемножают с коэффициентом, переводящим масштабные единицы в реальные. Дополнительно нужно предусмотреть еще 2 м, необходимые для подводки контура к стояку.
Для укладки труб в водяной отопительной системе используют две схемы:
- змейка;
- улитка (ракушка).
Сегодня для устройства водяной системы подогрева используют пять типов труб:
- из пенопропилена – стоят совсем недорого, но имеют низкий уровень теплопроводности;
- из металлопластика – самые популярные, так как обеспечивают наилучшее соотношение цены и качества;
- из сшитого полиэтилена – достаточно удачно заменяют металлопластиковые;
- из меди – наиболее дорогой вариант, но при этом и самые эффективные;
На заметку В последнее время появился ее один довольно эффективный вариант – нержавеющие гофрированные трубы.
- Следующим шагом рассчитывается количество теплоизоляции, чаще всего это фольгированный отражающий утеплитель. Его количество должно соответствовать площади помещения. При сложной поверхности, нужно будет подсчитать суммарную площадь отдельных участков.
- Рассчитывается также количество песка и цемента, необходимого для заливки стяжки определенной толщины. Их берут в соотношении три к одному.
Важно Изменяя шаг укладки в соответствии с площадью пола, можно добиться оптимального температурного режима. Однако, этого может быть недостаточно, чтобы сохранять комфортный микроклимат в помещении постоянно, особенно если дома есть дети. Поэтому обязательно должна быть предусмотрена регулировка температуры.
Программы для расчета характеристик
Специфика проектирования водяных теплых полов заключается не только в вычислении мощности, количества материалов, но и учета параметров теплоносителя. К ним относятся расчетная температура воды в обратной трубе, скорость ее прохождения и гидравлическое давление.
В интернете есть много примеров расчета систем http://webcala.net/tepliypol.php , однако, не всегда получается разобраться с нюансами самостоятельно. В этих случаях существенную помощь оказывают, выложенные в интернете программы расчета теплого водяного пола – онлайн калькуляторы. Принцип их работы заключается в подгонке гидравлических свойств под характеристики насоса, исходя из использованных значений параметров. Этот метод дает возможность маневрировать их возможными значениями.
Но для получения верной информации нужно знать исходные данные:
- Параметры помещения – общая квадратура или объем.
- Уровень температуры в комнате, которую должна поддерживать система обогрева.
- Степень нагрева теплоносителя при поступлении в распределительный коллектор. Для большинства случаев он не должен превышать 50°С.
- Температура воды в обратной трубе. Нужна для расчета теплоотдачи водяного теплого пола. Чем она выше – тем меньше энергии будет расходоваться на нагрев теплоносителя. Оптимальный показатель – до 40 — 50°С.
- Шаг укладки. Выбирается в зависимости от конфигурации помещения и общей площади нагрева.
- Виды покрытия. Обязательно нужно знать, какой декоративный материал будет устанавливаться поверх цементной стяжки (кафель, ламинат, паркет), толщину защитного бетонного слоя. Последний чаще всего делают до 5 см.
- Теплоизоляционный слой. Он нужен для максимальной теплоотдачи системы.
Хорошие онлайн калькуляторы показывают не только технические параметры, но и выполняют расчет стоимости водяного теплого пола.
Совет Рекомендуется использовать те ресурсы, где дается только количество материала без его стоимости. Таким образом, можно подставляя собственные значения получить несколько вариантов общей стоимости системы с учетом использования различных материалов.
После того как был произведен расчет мощности водяного теплого пола, можно приступить к выбору управляющих элементов – коллекторов и терморегуляторов.
Управляющие компоненты
Они необходимы для автоматического изменения режимов, согласно выставленным параметрам. Регулировка температуры теплого пола происходит с помощью нескольких элементов – смесительного клапана (двух или трехгодового), датчика температуры и наружного терморегулятора. Они подбираются согласно расчетным параметрам.
Совет Диаметр коллектора должен быть способен пропускать определенный объем воды за промежуток времени. Для вычисления этого показателя также можно воспользоваться специализированными программами.
Как рассчитать мощность теплого пола, имея минимальный опыт в проведении подобных работ? Рекомендуется обратиться в специализированные компании, которые помимо вычислений смогут предоставить услуги монтажа. Основная проблема онлайн калькуляторов заключается в относительно большой погрешности, так как не учитываются многие сторонние факторы.
Только индивидуальный подход к решению этой проблемы позволит создать по-настоящему эффективный теплый водяной пол. Расчет системы профессионалами и правильный подбор материалов гарантирую безопасность и продолжительное время работы всей конструкции.
Расчет стоимости водяного теплого пола желательно доверить профессионалам, учитывая массу нюансов, которые возможны в каждом индивидуальном случае.
Опубликовано 05 мая 2015
Рубрика: Теплотехника | 34 комментария
Несмотря на то, что теплопотери через пол большинства одноэтажных промышленных, административно-бытовых и жилых зданий редко превышают 15% от общих потерь тепла, а при увеличении этажности порой не достигают и 5%, важность правильного решения задачи…
…определения теплопотерь от воздуха первого этажа или подвала в грунт не теряет своей актуальности.
Особенно важно правильно рассчитать эти теплопотери для подвальных комнат (залов), где они могут составить все 100% для данного типа помещений!
В этой статье рассматриваются два варианта решения поставленной в заголовке задачи. Выводы — в конце статьи.
Считая потери тепла, всегда следует различать понятия «здание» и «помещение».
При выполнении расчета для всего здания преследуется цель — найти мощность источника и всей системы теплоснабжения.
При расчете тепловых потерь каждого отдельного помещения здания, решается задача определения мощности и количества тепловых приборов (батарей, конвекторов и т.д.), необходимых для установки в каждое конкретное помещение с целью поддержания заданной температуры внутреннего воздуха.
Воздух в здании нагревается за счет получения тепловой энергии от Солнца, внешних источников теплоснабжения через систему отопления и от разнообразных внутренних источников – от людей, животных, оргтехники, бытовой техники, ламп освещения, системы горячего водоснабжения.
Воздух внутри помещений остывает за счет потерь тепловой энергии через ограждающие конструкции строения, которые характеризуются термическими сопротивлениями, измеряемыми в м2·°С/Вт:
R=Σ(δi/λi)
δi – толщина слоя материала ограждающей конструкции в метрах;
λi – коэффициент теплопроводности материала в Вт/(м·°С).
Ограждают дом от внешней среды потолок (перекрытие) верхнего этажа, наружные стены, окна, двери, ворота и пол нижнего этажа (возможно – подвала).
Внешняя среда – это наружный воздух и грунт.
Расчет потерь тепла строением выполняют при расчетной температуре наружного воздуха для самой холодной пятидневки в году в местности, где построен (или будет построен) объект!
Но, разумеется, никто не запрещает вам сделать расчет и для любого другого времени года.
Расчет в Excel теплопотерь через пол и стены, примыкающие к грунту по общепринятой зональной методике В.Д. Мачинского.
Температура грунта под зданием зависит в первую очередь от теплопроводности и теплоемкости самого грунта и от температуры окружающего воздуха в данной местности в течение года. Так как температура наружного воздуха существенно различается в разных климатических зонах, то и грунт имеет разную температуру в разные периоды года на разных глубинах в различных районах.
Для упрощения решения сложной задачи определения теплопотерь через пол и стены подвала в грунт вот уже более 80 лет успешно применяется методика разбиения площади ограждающих конструкций на 4 зоны.
Каждая из четырех зон имеет свое фиксированное сопротивление теплопередаче в м2·°С/Вт:
R1=2,1 R2=4,3 R3=8,6 R4=14,2
Зона 1 представляет собой полосу на полу (при отсутствии заглубления грунта под строением) шириной 2 метра, отмеренную от внутренней поверхности наружных стен вдоль всего периметра или (в случае наличия подпола или подвала) полосу той же шириной, отмеренную вниз по внутренним поверхностям наружных стен от кромки грунта.
Зоны 2 и 3 имеют также ширину 2 метра и располагаются за зоной 1 ближе к центру здания.
Зона 4 занимает всю оставшуюся центральную площадь.
На рисунке, представленном чуть ниже зона 1 расположена полностью на стенах подвала, зона 2 – частично на стенах и частично на полу, зоны 3 и 4 полностью находятся на полу подвала.
Если здание узкое, то зон 4 и 3 (а иногда и 2) может просто не быть.
Площадь пола зоны 1 в углах учитывается при расчете дважды!
Если вся зона 1 располагается на вертикальных стенах, то площадь считается по факту без всяких добавок.
Если часть зоны 1 находится на стенах, а часть на полу, то только угловые части пола учитываются дважды.
Если вся зона 1 располагается на полу, то посчитанную площадь следует при расчете увеличить на 2×2х4=16 м2 (для дома прямоугольного в плане, т.е. с четырьмя углами).
Если заглубления строения в грунт нет, то это значит, что H=0.
Ниже представлен скриншот программы расчета в Excel теплопотерь через пол и заглубленные стены для прямоугольных в плане зданий.
Площади зон F1, F2, F3, F4 вычисляются по правилам обычной геометрии. Задача громоздкая, требует часто рисования эскиза. Программа существенно облегчает решение этой задачи.
Общие потери тепла в окружающий грунт определяются по формуле в КВт:
QΣ=((F1+F1у)/R1+F2/R2+F3/R3+F4/R4)*(tвр-tнр)/1000
Пользователю необходимо лишь заполнить в таблице Excel значениями первые 5 строчек и считать внизу результат.
Для определения тепловых потерь в грунт помещений площади зон придется считать вручную и затем подставлять в вышеприведенную формулу.
На следующем скриншоте показан в качестве примера расчет в Excel теплопотерь через пол и заглубленные стены для правого нижнего (по рисунку) помещения подвала.
Сумма потерь тепла в грунт каждым помещением равна общим тепловым потерям в грунт всего здания!
На рисунке ниже показаны упрощенные схемы типовых конструкций полов и стен.
Пол и стены считаются неутепленными, если коэффициенты теплопроводности материалов (λi), из которых они состоят, больше 1,2 Вт/(м·°С).
Если пол и/или стены утеплены, то есть содержат в составе слои с λ<1,2 Вт/(м·°С), то сопротивление рассчитывают для каждой зоны отдельно по формуле:
Rутепл i=Rнеутепл i+Σ(δj/λj)
Здесь δj – толщина слоя утеплителя в метрах.
Для полов на лагах сопротивление теплопередаче вычисляют также для каждой зоны, но по другой формуле:
Rна лагах i=1,18*(Rнеутепл i+Σ(δj/λj))
Расчет тепловых потерь в MS Excel через пол и стены, примыкающие к грунту по методике профессора А.Г. Сотникова.
Очень интересная методика для заглубленных в грунт зданий изложена в статье «Теплофизический расчет теплопотерь подземной части зданий». Статья вышла в свет в 2010 году в №8 журнала «АВОК» в рубрике «Дискуссионный клуб».
Тем, кто хочет понять смысл написанного далее, следует прежде обязательно изучить вышеназванную статью.
А.Г. Сотников, опираясь в основном на выводы и опыт других ученых-предшественников, является одним из немногих, кто почти за 100 лет попытался сдвинуть с мертвой точки тему, волнующую многих теплотехников. Очень импонирует его подход с точки зрения фундаментальной теплотехники. Но сложность правильной оценки температуры грунта и его коэффициента теплопроводности при отсутствии соответствующих изыскательских работ несколько сдвигает методику А.Г. Сотникова в теоретическую плоскость, отдаляя от практических расчетов. Хотя при этом, продолжая опираться на зональный метод В.Д. Мачинского, все просто слепо верят результатам и, понимая общий физический смысл их возникновения, не могут определенно быть уверенными в полученных числовых значениях.
В чем смысл методики профессора А.Г. Сотникова? Он предлагает считать, что все теплопотери через пол заглубленного здания «уходят» в глубь планеты, а все потери тепла через стены, контактирующие с грунтом, передаются в итоге на поверхность и «растворяются» в воздухе окружающей среды.
Это похоже отчасти на правду (без математических обоснований) при наличии достаточного заглубления пола нижнего этажа, но при заглублении менее 1,5…2,0 метров возникают сомнения в правильности постулатов…
Несмотря на все критические замечания, сделанные в предыдущих абзацах, именно развитие алгоритма профессора А.Г. Сотникова видится весьма перспективным.
Выполним расчет в Excel теплопотерь через пол и стены в грунт для того же здания, что и в предыдущем примере.
Записываем в блок исходных данных размеры подвальной части здания и расчетные температуры воздуха.
Далее необходимо заполнить характеристики грунта. В качестве примера возьмем песчаный грунт и впишем в исходные данные его коэффициент теплопроводности и температуру на глубине 2,5 метров в январе. Температуру и коэффициент теплопроводности грунта для вашей местности можно найти в Интернете.
Стены и пол выполним из железобетона (λ=1,7 Вт/(м·°С)) толщиной 300мм (δ=0,3 м) с термическим сопротивлением R=δ/λ=0,176 м2·°С/Вт.
И, наконец, дописываем в исходные данные значения коэффициентов теплоотдачи на внутренних поверхностях пола и стен и на наружной поверхности грунта, соприкасающегося с наружным воздухом.
Программа выполняет расчет в Excel по нижеприведенным формулам.
Площадь пола:
Fпл=B*A
Площадь стен:
Fст=2*h*(B+A)
Условная толщина слоя грунта за стенами:
δусл=f(h/H)
Термосопротивление грунта под полом:
R17=(1/(4*λгр)*(π/Fпл)0,5
Теплопотери через пол:
Qпл=Fпл*(tв— tгр)/(R17+Rпл+1/αв)
Термосопротивление грунта за стенами:
R27=δусл/λгр
Теплопотери через стены:
Qст=Fст*(tв— tн)/(1/αн+R27+Rст+1/αв)
Общие теплопотери в грунт:
QΣ=Qпл+Qст
Замечания и выводы.
Теплопотери здания через пол и стены в грунт, полученные по двум различным методикам существенно разнятся. По алгоритму А.Г. Сотникова значение QΣ=16,146 КВт, что почти в 5 раз больше, чем значение по общепринятому «зональному» алгоритму — QΣ=3,353 КВт!
Дело в том, что приведенное термическое сопротивление грунта между заглубленными стенами и наружным воздухом R27=0,122 м2·°С/Вт явно мало и навряд ли соответствует действительности. А это значит, что условная толщина грунта δусл определяется не совсем корректно!
К тому же «голый» железобетон стен, выбранный мной в примере — это тоже совсем нереальный для нашего времени вариант.
Внимательный читатель статьи А.Г. Сотникова найдет целый ряд ошибок, скорее не авторских, а возникших при наборе текста. То в формуле (3) появляется множитель 2 у λ, то в дальнейшем исчезает. В примере при расчете R17 нет после единицы знака деления. В том же примере при расчете потерь тепла через стены подземной части здания площадь зачем-то делится на 2 в формуле, но потом не делится при записи значений… Что это за неутепленные стены и пол в примере с Rст=Rпл=2 м2·°С/Вт? Их толщина должна быть в таком случае минимум 2,4 м! А если стены и пол утепленные, то, вроде, некорректно сравнивать эти теплопотери с вариантом расчета по зонам для неутепленного пола.
Но самый главный вопрос автору (или редакции журнала) касается формулы (3) и графика:
R27=δусл/(2*λгр)=К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
Насчет вопроса, относительно присутствия множителя 2 у λгр было уже сказано выше.
Я поделил полные эллиптические интегралы друг на друга. В итоге получилось, что на графике в статье показана функция при λгр=1:
δусл= (½)*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
Но математически правильно должно быть:
δусл= 2*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
или, если множитель 2 у λгр не нужен:
δусл= 1*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
Это означает, что график для определения δусл выдает ошибочные заниженные в 2 или в 4 раза значения…
Выходит пока всем ничего другого не остается, как продолжать не то «считать», не то «определять» теплопотери через пол и стены в грунт по зонам? Другого достойного метода за 80 лет не придумали. Или придумали, но не доработали?!
Предлагаю читателям блога протестировать оба варианта расчетов в реальных проектах и результаты представить в комментариях для сравнения и анализа.
Все, что сказано в последней части этой статьи, является исключительно мнением автора и не претендует на истину в последней инстанции. Буду рад выслушать в комментариях мнение специалистов по этой теме. Хотелось бы разобраться до конца с алгоритмом А.Г. Сотникова, ведь он реально имеет более строгое теплофизическое обоснование, чем общепринятая методика.
Прошу уважающих труд автора скачивать файл с программами расчетов после подписки на анонсы статей!
Ссылка на скачивание файла:
teplopoteri-cherez-pol-i-steny-v-grunt (xls 80,5KB)
P. S. (25.02.2016)
Почти через год после написания статьи удалось разобраться с вопросами, озвученными чуть выше.
Во-первых, программа расчета теплопотерь в Excel по методике А.Г. Сотникова считает все правильно — точно по формулам А.И. Пеховича!
Во-вторых, внесшая сумятицу в мои рассуждения формула (3) из статьи А.Г. Сотникова не должна выглядеть так:
R27=δусл/(2*λгр)=К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
В статье А.Г. Сотникова — не верная запись! Но далее график построен, и пример рассчитан по правильным формулам!!!
Так должно быть согласно А.И. Пеховичу (стр 110, дополнительная задача к п.27):
R27=δусл/λгр=1/(2*λгр)*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
Отсюда:
δусл=R27*λгр=(½)*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
Другие статьи автора блога
На главную
Статьи с близкой тематикой
- Кузьмин Олег Витальевич 06 мая 2015 07:26
Спасибо!
- Алексей 24 Июл 2015 12:08
Спасибо, очень поучительно
- Иван 08 Дек 2015 20:49
посчитали по этим методикам. результат отличается в 5!!! раз (методика Сотникова больше и явно правильнее). в ближайшее время будем мерять поле температур в бетонном полу и тогда посчитаем реальные теплопотери.
- Александр Воробьев 08 Дек 2015 21:48
Иван, я связывался с Анатолием Геннадьевичем Сотниковым. Он любезно откликнулся, согласился с несоответствиями в своей статье и попытался помочь разобраться, подключил И.Н. Шаталину (ученицу А.И. Пеховича) из ВНИИ Гидротехники.
«…Она почти без подготовки сказала, что можно взять сопротивление в задаче 4 на стр. 173. Для этого нужно объединить две противоположные стены в одну и если нужно учесть характеристики воздуха в подвале, тогда получится одна пластина с двухсторонним грунтом. Ввести условную характеристику стен согласно стр. 84 книги Пеховича…»
Речь идет о книге А.И. Пеховича и В.М. Жидких «Расчеты теплового режима твердых тел».
Я не смог воспользоваться рекомендацией, хотя книгу внимательно перечитал на 7 рядов…
Я считаю, что условная толщина грунта за стенами, рассчитанная по методике А.Г. Сотникова должна быть увеличена, но не уверен — в 2 или в 4 раза? Возможно ваши замеры подскажут правильное теоретическое решение. Не сочтите за труд прислать результаты расчетов, измерений и план с разрезом подвала.
- Сергей 23 Мар 2016 16:08
Александр, простите, но Ваша программа сбоит.
Для высоты равной ровно 2 м,она добавляет к F1 лишние 16 кв.м., а остальные считает правильно.
- Александр Воробьев 23 Мар 2016 20:15
Да, Сергей, спасибо, поправил.
Программа не верно считала для трех значений H=2, H=4 и H=6. При этом для H=1,999 и H=2,001 всё выдавала точно. Проглядел…
- Сергей 06 Мар 2017 02:21
Мне не понятна логика и первой методики: на картинке ясно нарисована температура грунта — Tгр, а в формулах для зон откуда-то берется температура воздуха снаружи здания. Почему ? Или это такое упрощенное решение ?
- Александр Воробьев 06 Мар 2017 12:42
Ответ на Ваш вопрос, Сергей, в 13, 14 и 15 абзацах этой статьи:
«Температура грунта под зданием зависит в первую очередь от теплопроводности и теплоемкости самого грунта и от температуры окружающего воздуха в данной местности в течение года. Так как температура наружного воздуха существенно различается в разных климатических зонах, то и грунт имеет разную температуру в разные периоды года на разных глубинах в различных районах.
Для упрощения решения сложной задачи определения теплопотерь через пол и стены подвала в грунт вот уже более 80 лет успешно применяется методика разбиения площади ограждающих конструкций на 4 зоны.
Каждая из четырех зон имеет свое фиксированное сопротивление теплопередаче…»
- Сергей 06 Мар 2017 23:15
Как раз как приближенно посчитали теплопроводность грунта — это совершенно понятно. Потери через каждую зону считаются (T (внутри) — Т(снаружи грунта))* Площадь зоны / Сопротивление термопередачи — это тоже понятно. Непонятно почему тепературу грунта приняли как температуру наруженего воздуха. Темература грунта на глубине ниже глубины промерзания практически постоянна и составляет примерно 4 гр Цельсия. Получается, что если подвал разположен ниже глубины промерзания, то температуру грунта нужно брать 4. Чего это вдруг подставляют температуру наружнего воздуха?
- Александр Воробьев 06 Мар 2017 23:49
Сергей, грунт выступает в роли ограждающей конструкции. Вы когда теплопотери через стену считаете почему берете температуру наружного воздуха, а не температуру где-нибудь в середине стены?
В первом варианте расчета обратите внимание на значение коэффициентов теплопроводности по зонам. Конечно, это эмпирическая условная методика для неглубоких подвалов… Собственно в статье об этом и написано. Прочитайте не торопясь всю статью еще раз.
- Сергей 09 Мар 2017 12:25
Александр, спасибо.
Я вроде разобрался: для расчета заменяем грунт стенами с термическими сопротивлениями по зонам и после этого считаем здание висящем в воздухе. Просто такая расчетная модель. Просто считаем, что эта модель дает оценку сверху для теплопотерь.
- Александр Воробьев 09 Мар 2017 18:59
Да, Сергей, именно так.
- EvilSpirit 19 Апр 2017 14:37
А как можно понять, не проводя расчетов, телоэффективно ли заглублять здание в грунт или нет?
- Александр Воробьев 19 Апр 2017 17:49
Землянки в войну и на фронте и в тылу копали не только из-за отсутствия материалов и безопасности, а в том числе из-за малых теплопотерь. Во многом умнее нас были наши деды.
- Сергей 22 Июн 2017 19:46
Прекрасная, простая и понятная статья!
Огромное спасибо, Александр!
Скажите пожалуйста, можно ли использовать Вашу программу (.xls) для расчёта теплопотерь бассейна или необходимо вводить какие-то поправочные коэффициенты?
Спасибо!
- Александр Воробьев 22 Июн 2017 20:22
Спасибо за комментарий, Сергей.
Программа для воздуха, но может быть использована для бассейна с водой при изменении значения коэффициента теплоотдачи на внутренних поверхностях пола и стен бассейна. Каким должно быть это значение я не помню, нужно подумать, посмотреть литературу.
- Сергей 22 Июн 2017 21:13
Спасибо, Александр
Мне удалось найти такую информацию:
«…Коэффициент теплоотдачи зависит от скорости потока носителя тепла, вида течения, какова геометрия поверхности твердого тела и т.д. Это сложная величина и ее невозможно определить общей формулой. Обычно коэффициент теплоотдачи находят экспериментально.
Так, для условий свободной конвекции воздуха: 5<@<25 (Вт/м2К), воды: 20<@<100 (Вт/м2К). При вынужденной конвекции величины коэффициента теплоотдачи колеблются в пределах: для воздуха: 10<@<200 (Вт/м2К), для воды: 50<@<10000 (Вт/м2К)…» (@ — alpha).
Как Вы думаете, можно ли использовать эти данные и, если можно, то какое значение выбрать? Быть может — 100?
Спасибо
- Сергей 26 Июн 2017 19:40
Александр, скажите пожалуйста
Результаты расчёта мы получаем в кВт. кВт=кВт/ч?
Спасибо
- Александр Воробьев 26 Июн 2017 21:01
Результаты мы получаем в кВт. Теплопотери — это мощность передачи тепла в окружающее пространство! Не энергия.
Нет такого понятия кВт/ч, так как Вт=Дж/сек!
Есть — кВт*ч — энергия.
- Сергей 27 Июн 2017 00:15
Полагаю, я Вас понял!
В моём случае, когда мне необходимо рассчитать теплопотери за период, я просто умножаю полученные кВт на время.
Спасибо, Александр
- Александр 27 Июн 2017 09:27
Да, Сергей, Вы все поняли правильно. Удачи!
- Сергей 27 Июн 2017 13:25
Комментируя свой пример в статье г-н Сотников пишет:
«…Сравнивая результаты расчетов теплопотерь подземной части здания,делаем вывод, что строгий теплофизический расчет указывает на существенно бóльшие теплопотери, чем приближенный расчет, принятый в отоплении (в 1,7 раза). Различие будет тем больше, чем больше заглубление здания и меньше площадь его пола…»
Следуя этой логике, результат расчёта по его методике для подвала с глубиной залегания лишь 1,5-2,5 должен приближаться к результатам по общепринятой методике. Или, по крайней мере, не отдаляться от значения 1,7. Сравнивая же результаты обеих методик из Вашей программы, разница получается значительная (в несколько раз).
Вот такая странная штука.
- Александр 27 Июн 2017 19:14
Да, теплотехника местами «странная штука»…
Чтобы сделать более точный анализ результатов, следует выполнить несколько десятков или сотен расчетов для различных по размерам в плане подвалов, разных заглублениях и различных перепадах температур. Хорошо бы сравнить с фактическими замерами теплопотерь…
Достойная и востребованная практикой тема для кандидатской диссертации.
- Сергей 28 Фев 2018 14:50
Александр, спасибо!
Как Вы истолковываете фразу Сотникова «Термическое сопротивление полуограниченного объема грунта в основании здания по формуле (2) равно: … ≈ 0, то есть пренебрежимо мало по сравнению с собственным термическим сопротивлением пола в подвале.»? А как быть, если земляной пол?
- Александр Воробьев 03 Мар 2018 16:43
Сергей, здравствуйте.
В примере, рассматриваемом Сотниковым:
R17=0,011 (м^2*C)/Вт
Rст=2 (м^2*C)/Вт
R17 существенно меньше Rст.
Если пол земляной, то весь грунт нужно мысленно разделить на 2 зоны вглубь.
Первая зона — это слой грунта до глубины, где температура не зависит (почти не зависит) от времени года.
Вторая зона — это грунт с постоянной температурой в любое время года.
Первая зона — это эквивалент пола из примера — имеет свое термическое сопротивление, зависящее от размеров пола и коэффициента теплопроводности материала грунта. Его нужно посчитать по формуле (2)…
- Максим 06 Мар 2018 16:17
Мне как теплоэнергетику интересна эта тема, хочу обратить внимание, что в глубины земли теплопоток не сможет долго идти, т.к. оттуда идет тепловой поток 29-49 мВт/м². (0,03-0,05 Вт/м2)
Через несколько лет под отапливаемым сооружением сформируется линза нагретого грунта и теплопоток от пола будет на каком-то расстоянии от фундамента разворачиваться и уходить в стороны, а потом на поверхность. Для больших сооружений это существенный момент.
- Александр Воробьев 06 Мар 2018 19:45
Максим, отчасти согласен с Вашим комментарием. Тепловой поток возникает при наличии разности температур, и его величина зависит от разности температур.
Когда сформируется линза прогретого грунта (а это явление широко известно строителям особенно в районах вечной мерзлоты), поток тепла через пол просто станет меньше, но никуда он не исчезнет и никуда не будет разворачиваться… Иначе, следуя Вашей логике, тепло через перекрытия этажей многоэтажных зданий должно проходить плиты и разворачиваться к наружным стенам. Если на этажах одинаковая температура воздуха, то никакого потока тепла через пол (потолок) просто нет. Если температуры немного разные — поток возникает параллельно градиенту температур и нарастает с ростом разницы температур.
- Николай 18 Мар 2018 01:27
ВОПРОС если слой земли прогревается,то обратно отдавать будет? Хочу гараж с тёплым полом без утеплителя сделать. Смысл в том, что у меня водяной солнечный коллектор будет. Летом пусть землю прогревает думаю. Параметры-чернозём, дальше сплошная глина, летом в колодце до зеркала воды 16м.
- Александр Воробьев 18 Мар 2018 11:20
Будет.
Вспомните деревенские ледники для хранения продуктов летом или то, что грунт промерзает на максимальную глубину только к началу весны.
- Михаил Николаевич 24 Авг 2018 19:31
Максим правильно обратил внимание. При стационарном режиме нагретое тело не имеет потерь тепла в толщу окружающей земли. Но!! При важной оговорке. Тело находится в бесконечной глубине.
Для одиночных труб и пластин (или слоя из ряда труб), находящихся на некоторой глубине есть аналитические формулы. Есть и поля температур и общие потери. Эксель гиперболический синус, входящий в формулы, считает. Для понимания процесов необходимо прежде анализировать эти аналитические формулы.
Если построить поле температур для тёплой пластины, закопаной на несколько метров и потом по этому полю вокруг пластины сделать срезы и посчитать тепловой поток между слоями земли, то окажется любопытная вещь. 400 Вт, допустим, пойдёт с верхней плоскости тёплой пластины к поверхности земли, а 100 Вт вниз. Так вот, если проследить дальше судьбу этих 100 Вт, то поток тепла плавно разворачивается и идёт опять же к поверхности земли.
Т.е. если на чертеже разреза подвала просто нарисовать от руки совершенно волюнтаристически путь этих тепловых линий и их длину считать толщиной слоя земли, то результат будет всегда сооответсвовать любой конфигурации подвала. С одной и той же ошибкой. В отличии от разнообразных аппроксимирующих методик, которые при изменении размеров здания и заглубления начинают рассыпаться.
Для определённости заглублённые стены подвала можно развернуть горизонтально и положить на отмостку. Тогда среднее расстояние между реальными стенами и зонами на поверхности, куда пойдёт тепло при заглублении 2 м равны, допустим (для любителей посчитать), 3,14*1м(половина высоты)/2 = 1,6 м. Тепловой поток с заглубленых стен стен равен 4стены1,2Дж/кгмград2м6м(длина здания)(20град в доме-0град на поверхности земли)/1,6м = 720 Вт. Только надо учитывать, что зимой температура на улице минус 4, а под снегом на поверхности земли — 0.
Теперь, если пол подвала разложить(размазать) на поверхности земли рядом со стенами по периметру и провести дугу, длина которой по принципу неизменного сечения потоока, равна 2мвыс+3,14*6м шир.здания/8=4,4 м. Тепловой поток от пола на глубине 2 м для дома 6*6м равен 1,2*6м*6м*(20-0)/4,4м = 196 Вт. Тут надо заметить, что для бетонных стен и пола подвала часть теплового потока пойдёт по бетону к надземной части стены и потери будут больше. Особенно для железобетона. Теплопроводность стали в 30 раз больше теплопроводности земли. Их надо считать дополнительно.
Ну, и поскольКу, считался только самый короткий путь, полученный результат надо умножать на 2???
К вычислениям надо добавить, что теплопроводность земли принятая в программе сайта R=2,1 это для полусухой земли. Для влажной раза в два менньше, для сухой больше.
Осталось два вопроса. Утеплённые стены и пол. Если на стене внутри прибиты 10 см минваты, теплопроводность, которой в 30 раз меньше земли, то добавьте к расчётной толщине грунта 1,6 м ещё 3 м (0,1м*Лямба грунта/Лямбда утеплителя) и результат станет 250 Вт, вместо прежних 760. А у пола 7,4 м вместо 4,4м и 117 Вт вместо 196Вт. Но коэфффициент увеличения 2?, о котором я говорил раньше, будет для стен (1,6м+3)/(1,6/2?+3)= 1,2? Коэфффициент увеличения для пола (4,4м+3)/(4,4м/2+3) = 1,4? В сумме с поправочным коэффициентом будет для утеплённого подвала 250*1,2?+117*1,4?=464 Вт. Для неутеплённого 956 Вт. Похоже на правду? Надо по реальным данным подобрать коэффициент.
Второй вопрос в подземном потоке воды. На глубине 4 -6 м чаще всего течёт подземная река с температурой 5 градусов. Т.е к уже учтённым потерям вверх надо добавить точно по такой же методике потери вниз
Только в этих расчётах лучше пользоваться тепловой проводимостью, а не тепловым сопротивлением…
Эти расчёты, которые я привёл, имеют отношение к действительности. А многие хитрые методики меня приводят в изумление.
Лучше, конечно на Экселе строить поле путей распространения тепла. Делается это довольно просто. Эксель позволяет разбивать исследуемый объём на тысячу элементов, при тысяче итераций по времени
- Габринец Владимир 26 Мар 2019 18:49
Спасибо!
Очень помогла получить результат при срочном расчете тепловых потерь через подвал жилого дома.
- Дмитрий 13 Фев 2020 09:32
ОООООчень интересно, но ничего не понял.
Но всё равно огромное спасибо!!!
- Павел 08 Апр 2020 14:29
Спасибо. Пополнил архивчик минипрограмм
- Ольга 23 Апр 2020 19:04
Спасибо. Когда то сама разбиралась с методикой Сотникова, не так глубоко конечно. Очень интересно
Ваш отзыв
Таблица для расчета теплоотдачи теплого пола
Теплый пол – это отличная возможность для каждого обеспечить уютный микроклимат и тепло в собственном доме. Такая система потребляет минимальное количество электроэнергии, даря необходимую теплоту в помещении.
При этом она с легкостью сочетается с любыми типами напольных покрытий, включая линолеум, ковролин, кафельную плитку и ковровое покрытие. Система гарантирует надежность, долговечность, стойкость к влаге, безопасность и легкость монтажа.
Особенности установки
Важным преимуществом конструкции выступает возможность равномерно распределить теплый воздух по жилой площади. При этом удается сэкономить до 12% энергии на общий обогрев помещения. Важно помнить о необходимости учитывать отдельные факторы во время эксплуатации.
Отопительная система должна работать в температурном диапазоне, который не превышает 60 градусов. Если упустить этот момент, возможна порча имущества. Сама поверхность водяного пола должна иметь оптимальную температуру, чтобы удовлетворять потребности. Это не только позволит добиться высокого комфорта эксплуатации, но и будет гарантировать отсутствие возможных заболеваний для ног. Чаще всего это значение достигает 26 градусов.
Чтобы монтаж был правильным, нужно позаботиться о том, чтобы расчет следующих параметров был корректным:
Несколько советов
Прежде чем осуществлять расчет потребности теплоотдачи, нужно учесть некоторые моменты. Первоначально нужно определить максимальную теплопроводность материалом, которые расположены выше трубы, пленок и кабелей, выступающих в качестве нагревательных элементов. Эффективность теплоотдачи зависит по прямо пропорциональному закону от тепловой мощности, по обратно пропорциональному от сопротивления покрытия.
Все трубы и материалы, которые будут расположены ниже уровня нагревательного элемента должны отличаться высокой теплоизоляцией. Это исключит возможные потери тепла через покрытия. Если монтаж и расчет осуществлены правильно, то теплоизоляция будет блокировать передачу тепла и отражать тепловое излучение.
Необходимость в тепловой мощности определяется теплоизоляцией и ее качеством. Предпочтительно придерживаться нормативов, которые будут гарантировать высокие эксплуатационные характеристики и комфорт.
Помните о том, что, если вы выбрали теплый пол, не стоит загромождать его массивными мебельными конструкциями. Это не принесет должного результата обогрева, а также возможен перегрев и порча мебели под воздействием температур.
Пример укладки теплого пола в кухне
Расчет потребности в тепле
Расчет потребности показателей представлен следующим алгоритмом:
При желании можно обращать внимание на слои ограждающих конструкций и их толщину. Это позволит добиться более точных расчетов.
Расчет теплоотдачи для пленочного нагревателя
Номинальная мощность в этом случае составляет 150-220 Ватт. Нужно понимать, что сам пленочный нагреватель – это слой фольгоизола для трубы. Он представляет собой вспененный полиэтилен, поверхность которого покрыта фольгой. Из-за этого часть тепла рассеивается, ведь эффективность зависит от толщины.
Чтобы задать температуру стандартного или водяного пола в заданном диапазоне, используют терморегуляторы. Значение обычно не достигает 40 градусов, а после эксплуатации необходимо отключать элемент и давать ему время для остывания. Из этого следует, что теплоотдача составляет около 70 ватт на каждый квадратный метр.
Расчет теплоотдачи для греющего кабеля
Греющий кабель отличается удельной теплоотдачей в 20-30 ватт на каждый квадратный метр. Расчет количества основан н шагах укладки. Дополнительно обращают внимание на следующее:
Помните, что кабель будет уложен не по всей площади. Поэтому нужно определиться со средними показателями, добиваясь максимальной эффективности. Каждый квадратный метр позволяет получить до 120 Ватт тепла при этом комфортная температура будет оставаться.
Таблица соотношения мощности и длины нагрева кабеля
Расчет теплоотдачи для водяного теплого пола
В отдельных случаях есть возможность сэкономить, если имеется источник тепла. Его можно использовать только в том случае, если цена за каждый киловатт намного ниже, чем стоимость электроэнергии.
В этом случае нужно учитывать следующее:
Если шаг составляет 250 миллиметров, каждый квадратный метр позволяет получить по 82 ватта. При шаге в 150 мм – 101 ватт, а при шаге в 100 мм – 117 ватт. Таблица включает в себя все эти данные. В зависимости от этих значений нужно осуществлять проектирование теплого водяного пола.
Зависимость теплого потока от шага труб и температуры теплоносителя
Помните о необходимости рассчитать тепловой поток с поверхности водяного пола. Чаще всего он достигает 12,6 Вт (м 2 хС). Это значение будет прямо пропорциональным перепаду температур.
Как рассчитать водяной теплый пол
Каждый этап проекта должен быть грамотно разработан с учетом всех норм, правил и нюансов. Перед тем как рассчитать водяной теплый пол, следует ознакомиться с особенностями его монтажа. Это обосновано тем, что ошибки, которые будут возникать в процессе эксплуатации, исправить будет уже не возможно.
Прежде чем приступить к организации теплого пола, следует знать основу и принцип работы. Первым шагом является составление общей схемы укладки труб, при этом особое внимание следует уделить полезной площади помещения, также размещению предметов мебели. С учетом масштаба комнаты формируется чертеж, на который следует наносить только точные замеры.
Трубопровод теплого пола
Расчет длины трубы теплого водяного пола основывается на том факторе, что максимальная длина любого участка не может быть больше, чем 80-100 м.
Схема укладки труб теплого пола и необходимые расчеты
Не следует упускать из внимания и длину шага укладки. В среднем она составляет 150 мм, но может и уменьшаться до 100 мм, что характерно для более прохладных условий. Саму трубу следует размещать на расстоянии 150-250 мм от стенок помещения.
Таблица расхода трубы теплого пола
Для расчета общей продолжительности трубы, предназначенной для отдельного контура, используется следующая формула:
где S – площадь, которую предстоит покрыть данным контуром, N – длина шага укладки, 1.1 – показатель коэффициента, который показывает запас требуемый на изгибы.
Также к этому значению следует прибавлять параметры длины трубы, которые требуются для монтажа линии подачи, а также для создания обратной ветки к коллектору.
Прокладывание труб для теплого пола
Для создания водяного теплого пола также потребуются следующие материалы:
- рулонная гидроизоляция – количество данного материала определяется путем вычисления площади пола с запасом в 10%, который потребуется для перекрытия стыков;
- утеплитель в виде пенополистирола — используется 5 % для подгонки и обрезки;
- лента демпферная – укладывается по периметру комнаты, а также в местах стыка;
- сетка арматурная – количество сетки равняется площади помещения, которая увеличена в 1,4 раза;
- бетон – зависит от предполагаемой толщины стяжки.
Чтобы расчеты были выполнены с максимальной точностью, следует обращаться за помощью к специалистам либо использовать специальную программу, которая называется VALTEC.PRG. Она предназначена для расчета основных параметров различных инженерных систем.
Автоматизация процесса расчетов системы теплого пола
Мощность водяного теплого пола
Принцип работы водяного теплого пола очень отличается от традиционного метода обогрева дома, так для обычного способа отопления свойственны температурные перепады. В результате такого явления активность конвекционных потоков возрастает. Недостатком такого подхода к обогреву помещений является большая вероятность травматизма. Это вызвано перегревом самих элементов отопительного устройства, которые могут привести к осушению кожи и образованию ожогов.
В основе метода обогрева помещения путем использования способа водяного теплого пола лежит принцип использования не горячей, а теплой воды.
Терморегулятор для теплого пола
В среднем ее значение может колебаться от 35 до 45 градусов, но при этом максимальный ее показатель составляет 50 градусов по Цельсию. Таким образом, для эффективного обогрева помещений используется вода невысокой температуры, которая позволит достичь не только оптимального результата, но и снизить вероятность получить травму к нулю.
Благодаря системе отопления в виде водяного теплого пола, предоставляется возможность создать благоприятные температурные условия, используя при этом лишь 40-150 Вт на квадратный метр. Несмотря на то, что этот показатель является относительно небольшим, но его вполне достаточно для достижения цели. Равномерное распределение водяного потока по всему периметру комнаты дает возможность снижать мощность обогревательного устройства.
Необходимые расчеты
Количество электроэнергии, которое необходимо для обогрева 1 кв. м. представляет собой основополагающий фактор. Благодаря ему предоставляется возможность определиться с типом обогрева помещения, а именно основной или дополнительный это вид. При этом следует исходить из тех факторов, что пространство, которое подвергается активному обогреву, должно немного превышать половину общей площади этой комнаты. Зачастую данный показатель имеет значение в 60-70%. Если водяной теплый пол характеризуется, как единственный источник тепла, то значением мощности термопленки принимается показатель в 150Вт/м².
Определение мощности теплого пола при помощи специальных программ
Если данный способ отопления используется в качестве дополнения к основному, то тогда показатель удельной мощности равняется 110-120 Вт/м².
С целью экономии затрат на оплату электрической энергии, которая используется обогревательным устройством, рекомендуется подключать термостат в сеть инфракрасного теплого пола. В результате это дает возможность не только установить контроль над работой электрических компонентов, но и снижать при этом затраты на 35%. Таким образом, можно утверждать, что электрический теплоноситель употребляет лишь 65% изначально планируемой мощности.
Исходя из вышеуказанных данных, можно с легкостью рассчитать необходимое количество энергии для отопления помещения площадью 18 кв. м. на протяжении 1 часа.
18 м² х 0,7 х (150 Вт/м² х0,65) = 1229 Вт/час,
где 0,7 – является коэффициентом, значение которого показывает долю задействованной площади под раскладку инфракрасного обогревателя,
0,65 – показатель, уточняющий процент работы элементов при условии использования терморегулятора.
Если стоимость 1 кВт электроэнергии составляет 3,58 р. то тогда цена за 1 час составляет:
1229 х 3,58 / 1000 = 4,40 р. а за 7 часов работы за весь день: 7 х 4,40 = 30,8 р.
Выполнение расчетов подобного типа несет в себе важную информацию, которая необходима для организации трубопровода для теплого пола. Результаты вычислений будут очень полезными при разработке самой конструкции обогревательного устройства.
Внешний вид конструкции теплого пола
Температурный показатель поверхности пола для ванных комнат при таком способе отопления может достигать различных значений, максимум которых закреплен на 33 градусах.
Таким образом, чтобы рассчитать продолжительность трубопровода водяного теплого пола, следует руководствоваться такими величинами, а именно теплопотеря, доля площади помещения, которая задействована под обогрев, и показатель нормативной температуры.
Значение удельной мощности в зависимости от типа обогреваемых помещений
В зависимости от типа помещения, которое предстоит обогреть, выделяют различные требования для отдельных комнат.
Расчет мощности и таблица теплопотребления разных частей здания
Такое деление возникает из-за функционального предназначения рассматриваемой площади. Если сравнивать спальню и застекленную лоджию, то для второго варианта требуется намного больше мощности, чем для первого. Стандартными показателями считаются следующие данные: кухня – 110-150 Вт/м², ванная – 140-150 Вт/м², лоджия под стеклянным покрытием – 140-180 Вт/м².
Значения удельной мощности также принято указывать с некоторым запасом. Такое решение принято на основании того, что создается запас в 30 % для той системы, которая работает в режиме 70 %.
Значение мощности необходимой для обогрева квадратного метра
Главным показателем, на который ориентируется человек при выборе способа нагревательного устройства, является расчет мощности водяного теплого пола на квадратный метр. Если теплый пол является единственным источником отопления, то удельная его мощность должна характеризоваться такими значениями – 150-180 Вт/м². Если данный способ обогревания выступает в качестве дополнительного, то величина мощности приравнивается к 110-140 Вт/м² .
Расчет водяного теплого пола и его мощности дает возможность спроектировать отопительную систему с максимальной эффективностью, что в итоге отразится на продолжительности ее полезного использования.
Укладка водяного теплого пола
Так как погода бывает переменчивая и потребность в обогреве помещений изменяется, следует использовать регуляторы. Различают их ручного и автоматического типа.
Тип подключения теплого пола в санузле – от полотенцесушителя
При формировании контура теплого пола, особое внимание следует уделить выбору способа его подключения. В качестве места для подсоединения к общей системе может быть радиатор, магистральная труба, полотенцесушитель.
Полотенцесушитель для подключения системы теплого пола
При формировании отопительной системы, следует учитывать тот фактор, что использовать насос для прокачки жидкости по системе в ванной совсем не обязательно. Это обосновано тем, что большинство таких помещений не имеют большой площади и естественного циркулирования будет вполне достаточно. Прежде чем смонтировать теплый пол водяной, расчет туб следует выполнить тщательно и хорошо подготовить поверхность, а именно удалить старое покрытие.
Выполнение проекта теплого водяного пола
Если выбор способа подключения к системе отопления сделан в пользу полотенцесушителя, то в обязательном порядке следует предусмотреть установку краном, а именно Маевского или обычного типа. Благодаря таким элементам предоставляется возможность удалить из системы образовавшийся воздух.
Когда водяной теплый пол в ванной от полотенцесушителя работает, то на его обратку следует установить гермостатический клапан RTL. Благодаря такому устройству будет осуществляться не только регулировка подачи воды, но и температурного режима. Обратку в данном случае рекомендуют подключать в магистральную систему.
В целях безопасности и удобства в последующем обслуживании не следует бетонировать узел подключения. В противном случае доступ к нему будет исключен, что является не очень хорошо. Зачастую в качестве места его установки выбирают пространство под ванной либо нишу в стене, если такая имеется. При втором варианте обычно ее скрывают под декоративной дверцей или же плиткой, которую легко потом снять.
Очередность выполнения монтажных работ
Чтобы теплоотдача теплого водяного пола была максимальной, применяется теплоизоляция. В качестве материала берется экструдированный пенополистирол толщиной в 50 мм и плотностью 35 кг на куб либо фольгированный пеноизолом. Следующим шагом является укладка отражающей пленки, задача которой направить тепловую энергию вверх. Для покрытия стен используется демпферная краевая лента. Ее задача – это защита стяжки от образования трещин.
Потом наступает черед укладки металлопластиковых труб.
Металлопластиковые трубы для конструкции теплого пола
Самым часто используемым методом является способ «улитка». Для нее характерно:
- шаг между трубами равняется 15 см, вблизи наружных стен – 10см;
- их крепление осуществляется при помощи скоб и вязальной проволоки, используется либо монтажная сетка, либо пластмассовый распределитель.
Если теплоизоляция производится за счет пленки, ее следует прикрепить к напольному покрытию саморезами.
Герметичность трубопровода и стяжки пола
С целью избежать неприятностей в будущем по поводу качества выполненной укладки теплого пола, следует в обязательном порядке проверять ее на герметичность соединения.
Проверка системы на герметичность
Этот процесс осуществляется путем заполнения системы водой. При положительном результате наступает черед заливки бетона, но при этом все трубы должны быть наполнены жидкостью с давлением в 2 атм. Этот слой в общей сложности должен равняться 6 см. После затвердения смеси, следует выполнить обрезку краевой ленты, которая выступает за края, и начать укладывать плитку.
Только после 21-28 дней от дня заливки бетонной смеси систему можно вводить в эксплуатацию. Но при этом следует делать это постепенно – повышать температурный режим со временем. В противном случае это грозит появлением разности коэффициента расширения.
Таким образом, подключить водяной теплый пол можно к любому элементу общей системы, но при этом следует учитывать все нормы и требования. А вот правильность проведения расчетов дает возможность продлить срок эксплуатации такого способа отопления на длительный период.
Схема укладки труб теплого пола и необходимые расчеты
Таблица расхода трубы теплого пола
Прокладывание труб для теплого пола
Автоматизация процесса расчетов системы теплого пола
Терморегулятор для теплого пола
Внешний вид конструкции теплого пола
Определение мощности теплого пола при помощи специальных программ
Расчет мощности и таблица теплопотребления разных частей здания
Укладка водяного теплого пола
Полотенцесушитель для подключения системы теплого пола
Выполнение проекта теплого водяного пола
Металлопластиковые трубы для конструкции теплого пола
Проверка системы на герметичность
Стяжка теплого пола бетоном
Расчет необходимого количества материалов для монтажа системы теплого пола
Схема укладки и расчета трубопровода
Тёплые полы
Что такое тёплый пол?
Тёплый пол — система отопления, нагревающая воздух в помещении снизу. Отопительный прибор — Пол.
Тёплый воздух распространятеся в помещении более равномерно, при использовании тёплых полов, и это положительно влияет на здоровье человека. Области тела с более высокой теплоотдачей требуют соответствующих температурных зон, для того, чтобы выровнять температуру тела. Если в зоне головы тепловой поток выше, чем в зоне ног, то нарушается баланс теплообмена, климат в помещении считается неблагоприятным.
Рекомендуется среднюю температуру поверхности пола принимать не выше (согласно СНиП 2.04.05*91*, п. 3.16):
26°С — в помещениях с постоянным пребыванием людей,
31°С — в помещениях с временным пребыванием людей, а также для дорожек плавательных бассейнов,
По оси нагревательного элемента температура поверхности пола в детских садах, жилых зданиях и плавательных бассейнах не должна превышать 35°С.
Принцип работы тёплого пола
Под напольным покрытием находятся нагревательные элементы, которые отдают тепло полу, нагреваю помещение.
Виды тёплых полов
Тёплый пол может быть Водяным ,электрическим и электро-водяным .
Водяной тёплый пол
Принцип работы водяного теплого пола довольно очень прост. Горячая вода течет по специальной трубке, вмонтированной в пол. За счёт разницы температуры воды, которая циркулирует в системе тёплого пола, тепло в помещении распространяется более равномерно, чем при использовании обыкновенной системы отопления.
Источником горячей воды служить газовый котел или либо система центрального отопления.
Для системы отопления тёплого пола, как правило использую металлопластиковые трубы, но возможны и другие варианты.
Монтаж водяных тёплых полов
Перед началом монтажа необходимо продумать план укладки (что бы знать необходимую длину трубы), размещение деформационных швов (если площадь тёплого пола более 30м2) и форму и Шаг укладки.
Прежде чем заливать стяжку, на стены, а также другие строительные элементы по периметру строительной конструкции устанавливается демпферная лента. Демпферная лента обеспечивает «движение» пола в пределах 3-5 мм. Демпферные ленты — это компенсаторы по периметру обогреваемого помещения, для исключения повреждения стяжки и напольного покрытия, после возникновении температурного расширения от трубопроводов, весь пол должен быть разделен демпферными лентами на отдельные панели, площадь каждой из которых не должна превышать 30 м2 (согласно СП 41-102-98).
Укладка многослойных металлопластиковых труб может осуществляться в любой удобной форме. Благодаря малому температурному удлинению при применении металлопластиковых труб не возникает проблем, связанных с механическим воздействием температурной нагрузки при длительной эксплуатации.
Необходимо выбрать форму укладки, которая наилучшим образом подходит для данного помещения и соответствует необходимым требованиям:
Форма укладки водяного тёплого пола
Укладка «Спиралью» — Чередование более тёплой подачи и менее тёплой обратки происходит более равномерное распределение температуры поверхности пола.
Укладка «Спиралью» с уплотнением в краевой зоне — Меньший шаг в зоне уплотнения увеличиваетт теплоотдачу поверхности пола в этой зоне.
Укладка «одиночным змеевиком»: — Лучше начинать от наружной стены, температура теплоносителя выше в начале и остывает по мере перемещения вглубь обогреваемого помещения.
Укладка «одиночным змеевиком» с уплотнением в краевой зоне: — Меньший шаг в зоне уплотнения увеличивает теплоотдачу поверхности пола в этой зоне.
Тёплый пол укладывают на некотором расстоянии от наружной стены, т.к. там уже проходят трубы обыкновенной системы отопления.
Не обязательно делать тёплый пол под мебелью, лучше отступить от стены необходимое расстояние.
Обычно при строительстве уже известно расположение кухонного гарнитура и при проектировании просят отступить от стены на метр. Рекомендация: Делайте отступ на ширину кухонного гарнитура, обычно это 600м. Иначе получается, что в середине кухни тепло. А когда встаёте к плите или нарезаете, что-то на столе — то ногам холодно. И так постоянно.
Перепады тепла неприятны при переходе из комнаты в комнату. Поэтому лучше немного удлинить одно-два ответвления в сторону двери. Как с одной, так и с другой стороны комнаты.
Шаг укладки водяного тёплого пола
От шага укладки зависит температура поверхности и, соответственно, мощность теплоотдачи тёплого пола. Для водяного тёплого пола производители металлопластиковых труб рекомендую следующие шаги укладки:
10, 15, 20, 25, 30см. Шаг в 200мм считается наиболее оптимальным, т.к. обогревается вся поверхность пола и упрощается монтаж в местах поворота трубы.
При более плотном шаге, повороты трубы становятся петлеобразными, а при меньшем шаге, поверхность пола прогревается неравномерно.
Теплоотдача водяного теплого пола
При проектировании системы отопления здания, следует помнить, что тёплый пол не может полностью заменить систему отопления. Ну только в Волгограде и южнее, можно попробовать спроектировать отопление только тёплыми полами. Во всех других регионах необходима комбинированная система отопления.
Одна секция отопительного прибора высотой 500мм даёт от 140 до 180Вт тепла. 1 квадратный метр тёплого пола даст от 40 до 90Вт. При большей теплоотдачи, температура поверхности пола становится выше 26°С.
Но знаю общую теплоотдачу тёплого пола в каждом помещении, можно уменьшить количество секции батарей системы отопления.
Дано: Помещение с температурой внутри +22°С и керамическим напольным покрытием. Толщина цементно-песчаной стяжки 45 мм над трубой.
При средней температуре теплоносителя +30°С.
Теплоотдача 1 квадратного метра тёплого пола при шаге 200мм: 39,9Вт
Температура поверхности: +25,6 °С.
При средней температуре теплоносителя +40°С.
Теплоотдача 1 квадратного метра тёплого пола при шаге 200мм: 89,9Вт
Температура поверхности: +30,2 °С.(Больше 26°С)
Эти данные можно получить из каталога производителей металлопластиковых труб.
Электрические тёплые полы
Виды электрических тёплых полов
Кабельный электрический тёплый пол
Принцип электрического кабельного тёплого пола точно такой же как и водяного тёплого пола.
Укладывать его можно и змейкой, и спиралью в зависимости от расположения тёплого пола в помещении. Разницы особой нет, т.к. температура кабеля по всей длине одинаковая.
Максималную длину одной ветки, а также шаг, глубину укладки и теплоотдачу необходимо смотреть в инструкции к конкретному тёплому полу.
Каждый производитель рекомендует шаг укладки для своего типа пола. Но в целом разница небольшая.
Кабельный с армирующей сеткой электрический тёплый пол
Электрический кабельный с армирующей сеткой тёплый пол ужё уложен змейкой с определённым шагом на сетку. Необходимо только разложить сетку по поверхности пола.
Пленочный электрический тёплый пол
Главный плюс плёночного тёплого пола в том, что его можно монтировать самостоятельно под любое покрытие – от ламината до плитки, без цементной стяжки.
Плёнку необходимо разделить по линиям, которые указал производитель и разложить на полу по схеме.
После пленку необходимо подключить к проводке. Установить контактные зажимы на краях медной полосы и к ним подключить контактные провода.
Необходимо заизолировать битумной изоляции все места подключения проводов и места разреза пленки с обратной стороны.
Перед укладкой финишного покрытия обязательно протестируйте тёплый пол, чтобы все секции работали и прогревались равномерно.
В любом случае необходимо ВНИМАТЕЛЬНО изучить инструкцию по монтажу и эксплуатации перед началом работ с электрическими тёплыми полами
Несмотря на сложность монтажа, напольный подогрев с помощью водяного контура считается одним из наиболее рентабельных методов отопления помещения. Чтобы система функционировала максимально эффективно и не давала сбоев, надо правильно выполнить расчет труб для теплого пола – определить длину, шаг петли и схему укладки контура.
От этих показателей во многом зависит комфортность пользования водяным обогревом. Именно эти вопросы мы будем разбирать в нашей статье – расскажем, как подобрать оптимальный вариант труб, учитывая технические характеристики каждой разновидности. Также после прочтения этой статьи вы сможете правильно выбрать шаг укладки и рассчитать необходимый диаметр и длину контура теплого пола для конкретного помещения.
Параметры для расчета теплового контура
На стадии проектирования необходимо решить ряд вопросов, определяющих конструктивные особенности теплого пола и режим эксплуатации – подобрать толщину стяжки, насос и другое необходимое оборудование.
Технические аспекты организации отопительной ветки во многом зависят от ее назначения. Помимо назначения, для точного расчета метража водяного контура понадобится ряд показателей: площадь покрытия, плотность теплового потока, температура теплоносителя, вид напольного покрытия.
Площадь покрытия трубами
При определении габаритов основания под укладку труб в учет берется пространство, не загроможденное крупной техникой и встроенной мебелью. Необходимо заранее продумать компоновку предметов в помещении.
Если водяной пол используется как основной поставщик тепла, то его мощности должно хватать для возмещения 100% тепловых потерь. Если змеевик – дополнение к радиаторной системе, то он обязан покрывать 30-60% издержек теплоэнергии помещения
Тепловой поток и температура теплоносителя
Плотность теплового потока – это расчетный показатель, характеризующий оптимальное количество теплоэнергии для отопления комнаты. Величина зависит от ряда факторов: теплопроводности стен, перекрытий, площади остекления, наличия утепления и интенсивности воздухообмена. Исходя из теплового потока, определяется шаг укладки петли.
Максимальный показатель температуры теплоносителя – 60 °С. Однако толщина стяжки и напольное покрытие сбивают температуру – по факту на поверхности пола наблюдается около 30-35 °С. Разница между термопоказателями на входе и выходе контура не должна превышать 5 °С.
Вид напольного покрытия
Финишная отделка влияет на эффективность системы. Оптимальная теплопроводность у кафеля и керамогранита – поверхность быстро нагревается. Хороший показатель КПД водяного контура при использовании ламината и линолеума без теплоизоляционной прослойки. Наименьшая теплопроводность у деревянного покрытия.
Степень теплоотдачи зависит и от материала заливки. Максимально эффективна система при использовании тяжелого бетона с природным заполнителем, например, морской галькой мелкой фракции.
Цементно-песчаный раствор обеспечивает средний уровень теплоотдачи при разогреве теплоносителя до 45 °С . КПД контура существенно падает при устройстве полусухой стяжки
При расчете труб для теплого пола следует учесть установленные нормы температурного режима покрытия:
- 29 °С – жилая комната;
- 33 °С – помещения повышенной влажности;
- 35 °С – проходные зоны и пояса холода – участки вдоль торцевых стен.
Немаловажное значение для определения плотности укладки водяного контура отыграют климатические особенности региона. При расчете теплопотерь надо учитывать минимальную температуру зимой.
Как показывает практика, сократить нагрузку поможет предварительное утепление всего дома. Есть смысл сначала теплоизолировать помещение, а после приступать к расчету теплопотерь и параметров трубного контура.
Оценка технических свойств при выборе труб
Ввиду нестандартных условий эксплуатации к материалу и типоразмеру змеевика водяного пола предъявляются высокие требования:
- химическая инертность, стойкость к коррозийным процессам;
- наличие абсолютно гладкого внутреннего покрытия, не склонного к образованию известковых наростов;
- прочность – изнутри на стенки постоянно воздействует теплоноситель, а снаружи – стяжка; труба должна выдерживать напор до 10 Бар.
Желательно, чтоб отопительная ветвь имела небольшой удельный вес. Пирог водяного пола и без того оказывает существенную нагрузку на перекрытие, а тяжелый трубопровод только усугубит ситуацию.
Согласно СНиП в закрытых отопительных системах запрещено применение сварных труб независимо от вида шва: спирального или прямого
К перечисленным требованиям в той или иной мере соответствуют три категории трубного проката: сшитый полиэтилен, металлопластик, медь.
Вариант #1 – сшитый полиэтилен (PEX)
Материал имеет сетчатую широкоячеистую структуру молекулярных связей. От обычного полиэтилена модифицированный отличается наличием как продольных, так и поперечных связок. Такое строение повышает удельный вес, механическую прочность и химическую стойкость.
Водяной контур из PEX-труб обладает рядом преимуществ:
- высокая эластичность, позволяющая укладывать змеевик с малым радиусом загиба;
- безопасность – при нагреве материал не выделяет вредных компонентов;
- термостойкость: размягчение – от 150 °С, плавление – 200 °С, горение – 400 °С;
- сохраняет структуру при температурных колебаниях;
- устойчивость к повреждениям – биологическим разрушителям и химическим реагентам.
Трубопровод сохраняет первоначальную пропускную способность – на стенках не откладывается осадок. Ориентировочный срок службы PEX-контура – 50 лет.
К недостаткам сшитого полиэтилена можно отнести: боязнь солнечных лучей, негативное воздействие кислорода при его проникновении вовнутрь структуры, необходимость жесткой фиксации змеевика при укладке
Различают четыре группы изделий:
- PEX-a – пероксидная сшивка. Достигается наиболее прочная и равномерная структура с плотностью связей до 75%.
- PEX-b – силановая сшивка. В технологии используются силаниды – токсичные вещества, недопустимые к бытовому использованию. Производители водопроводной продукции заменяют его безопасным реагентом. К установке допустимы трубы с гигиеническим сертификатом. Плотность сшивки – 65-70%.
- PEX-c – радиационный метод. Полиэтилен подвергается облучению потоком гамма-лучей или электроном. В результате связи уплотняются до 60%. Недостатки PEX-с: небезопасность применения, неравномерность сшивки.
- PEX-d – азотирование. Реакция по созданию сетки протекает за счет радикалов азота. На выходе получается материал с плотностью сшивки порядка 60-70%.
Прочностные характеристики PEX-труб зависят от метода сшивки полиэтилена.
Если вы остановились на трубах из сшитого полиэтилена, рекомендуем ознакомиться с правилами обустройства системы теплого пола из них.
Вариант #2 – металлопластик
Лидер трубного проката для обустройства теплых полов – металлопластик. Конструктивно материал включает пять слоев.
Внутреннее покрытие и внешняя оболочка – полиэтилен высокой плотности, придающей трубе необходимую гладкость и термостойкость. Промежуточный слой – алюминиевая прокладка
Металл увеличивает прочность магистрали, снижает показатель температурного расширения и выступает антидиффузным барьером – перекрывает поступление кислорода к теплоносителю.
Особенности металлопластиковых труб:
- хорошая теплопроводность;
- способность удерживать заданную конфигурацию;
- рабочая температура с сохранением свойств – 110 °С;
- малый удельный вес;
- бесшумность перемещения теплоносителя;
- безопасность применения;
- коррозийная стойкость;
- длительность эксплуатации – до 50 лет.
Недостаток композитных труб – недопустимость изгибания касательно оси. При многократном скручивании есть риск повреждения алюминиевой прослойки. Рекомендуем ознакомиться с правильной технологией монтажа металлопластиковых труб, что поможет избежать повреждений.
Вариант #3 – трубы из меди
По технико-эксплуатационным характеристикам желтый металл станет лучшим выбором. Однако его востребованность ограничивается высокой стоимостью.
По сравнению с синтетическими трубопроводами медный контур выигрывает по нескольким пунктам: теплопроводность, термическая и физическая прочность, неограниченная вариативность изгиба, абсолютная непроницаемость для газов
Кроме дороговизны, медному пайпингу присущ дополнительный минус – сложность монтажа. Для сгибания контура понадобится пресс-машина или трубогиб.
Вариант #4 – полипропилен и нержавейка
Иногда отопительную ветку создают из полипропиленовых или нержавеющих гофрированных труб. Первый вариант доступен по цене, но довольно жесткий на изгиб – минимальный радиус от восьми диаметров изделия.
Это значит, что трубы типоразмером в 23 мм придется располагать друг от друга на дистанции 368 мм — увеличенный шаг укладки не обеспечит равномерность обогрева.
Нержавеющие трубы отличаются высокой теплопроводностью и хорошей гибкостью. Минусы: недолговечность уплотнительных резинок, создание гофрой сильного гидравлического сопротивления
Возможные способы укладки контура
Для того чтобы определить расход трубы на обустройство теплого пола, следует определиться со схемой размещения водного контура. Основная задача планирования раскладки – обеспечение равномерного обогрева с учетом холодных и неотапливаемых зон помещения.
Возможны следующие варианты раскладки: змейкой, двойной змейкой и улиткой. При выборе схемы надо учитывать размеры, конфигурацию помещения и расположение наружных стен
Способ #1 – змейка
Теплоноситель подается к системе вдоль стены, проходит по змеевику и возвращается к распределительному коллектору. В этом случае половина помещения прогревается горячей водой, а остаток – охлажденной.
При укладке змейкой невозможно добиться равномерности обогрева – разница температур может достигать 10 °С. Метод применим в узких помещениях.
Схема угловой змейки оптимально подходит, если необходимо максимально утеплить холодную зону у торцевой стены или в прихожей
Двойная змейка позволяет достичь более мягкого перехода температур. Прямой и обратный контур идет параллельно друг другу.
Способ #2 – улитка или спираль
Это считается оптимальной схемой, обеспечивающей равномерность нагрева напольного покрытия. Прямые и обратные ветки укладываются попеременно.
Дополнительный плюс «ракушки» – монтаж нагревательного контура с плавным поворотом загиба. Этот способ актуален при работе с трубами недостаточной гибкости
На больших площадях реализуют комбинированную схему. Поверхность делят на секторы и под каждый разрабатывают отдельный контур, идущий к общему коллектору. По центру помещения трубопровод выкладывается улиткой, а вдоль наружных стен – змейкой.
У нас на сайте есть другая статья, в которой мы детально рассмотрели монтажные схемы укладки теплого пола и привели рекомендации по выбору оптимального варианта в зависимости от особенностей конкретного помещения.
Методика расчета труб
Чтобы не запутаться в вычислениях, предлагаем разделить решение вопроса на несколько этапов. Прежде всего, надо оценить теплопотери помещения, определить шаг укладки, а потом и рассчитать длину отопительного контура.
Принципы построения схемы
Приступая к расчетам и созданию эскиза, следует ознакомиться с базовыми правилами расположения водного контура:
- Желательно укладывать трубы вдоль оконного проема – это значительно снизит теплопотери здания.
- Рекомендованная площадь покрытия одним водным контуром – 20 кв. м. В больших помещениях необходимо делить пространство на зоны и для каждой прокладывать отдельную отопительную ветку.
- Дистанция от стены к первой ветке – 25 см. Допустимый шаг витков труб в центре помещения – до 30 см, по краям и в холодных зонах – 10-15 см.
- Определение максимальной длины трубы для теплого пола должно основываться на диаметре змеевика.
Для контура сечением 16 мм допустимо не больше 90 м, ограничение для трубопровода толщиной 20 мм – 120 м. Соблюдение норм обеспечит нормальное гидравлическое давление в системе.
В таблице приведен ориентировочный расход трубы, зависимо от шага петли. Для получения уточненных данных следует учесть запас на повороты и расстояние до коллектора
Базовая формула с пояснениями
Расчет длины контура теплого пола выполняется по формуле:
L=S/n*1,1+k,
Где:
- L – искомая протяженность отопительной магистрали;
- S – покрываемая площадь пола;
- n – шаг укладки;
- 1,1 – стандартный коэффициент десятипроцентного запаса на изгибы;
- k – удаленность коллектора от пола – учитываются расстояние до разводки контура на подаче и обратке.
Решающее значение отыграет площадь покрытия и шаг витков.
Для наглядности на бумаге надо составить план помещения с указанием точных размеров и обозначить прохождение водного контура
Следует помнить, что размещение отопительных труб не рекомендовано под крупной бытовой техникой и встроенной мебелью. Параметры обозначенных предметов надо вычесть из общей площади.
Чтобы подобрать оптимальную дистанцию между ветками необходимо провести более сложные математические манипуляции, оперируя теплопотерями помещения.
Теплотехнический расчет с определением шага контура
Плотность размещения труб напрямую влияет на величину теплопотока, исходящего от отопительной системы. Для определения требуемой нагрузки необходимо рассчитать издержки тепла зимой.
Тепловые издержки через конструктивные элементы здания и вентиляцию должны полностью компенсироваться выработанной теплоэнергией водяного контура
Мощность отопительной системы определяется формулой:
M=1,2*Q,
Где:
- М – производительность контура;
- Q – общие теплопотери помещения.
Величину Q можно разложить на составляющие: расход энергии через ограждающие конструкции и издержки, обусловленные работой вентсистемы. Разберемся, как рассчитать каждый из показателей.
Теплопотери через элементы здания
Необходимо определить расход теплоэнергии для всех ограждающих конструкций: стен, потолка, окон, дверей и т. д. Расчетная формула:
Q1=(S/R)*Δt,
Где:
- S – площадь элемента;
- R – термическое сопротивление;
- Δt – разница между температурой внутри помещения и на улице.
При определении Δt используется показатель для наиболее холодного времени года.
Термическое сопротивление высчитывается следующим образом:
R=A/Кт,
Где:
- А – толщина слоя, м;
- Кт – коэффициент теплопроводности, Вт/м*К.
Для комбинированных элементов сооружения сопротивление всех слоев надо просуммировать.
Коэффициент теплопроводности стройматериалов и утеплителей можно взять из справочника или посмотреть в сопроводительной документации к конкретному изделию
Больше значений коэффициента теплопроводности для самых популярных стройматериалов мы привели в таблице, содержащейся в следующей статье.
Вентиляционные теплопотери
Для расчета показателя используется формула:
Q2=(V*K/3600)*C*P*Δt,
Где:
- V – объем помещения, куб. м;
- K – кратность воздухообмена;
- C – удельная теплоемкость воздуха, Дж/кг*К;
- P – плотность воздуха при нормальной комнатной температуре – 20 °С.
Кратность воздухообмена большинства помещений приравнивается единице. Исключение составляют дома с внутренней пароизоляцией – для поддержания нормального микроклимата воздух должен обновляться дважды в час.
Удельная теплоемкость – справочный показатель. При стандартной температуре без давления величина составляет 1005 Дж/кг*К.
В таблице приведена зависимость плотности воздуха от окружающей температуры в условиях атмосферного давления – 1,0132 бара (1 Атм)
Суммарные теплопотери
Итоговое количество теплопотерь помещения будет равно: Q=Q1*1,1+Q2. Коэффициент 1,1 – увеличение энергозатрат на 10% в связи с инфильтрацией воздуха через щели, неплотности строительных конструкций.
Умножив полученное значение на 1,2, получим требуемую мощность теплого пола для возмещения теплопотерь. Используя график зависимости теплового потока от температуры теплоносителя можно определить подходящий шаг и диаметр трубы.
Вертикальная шкала – средний температурный режим водяного контура, горизонтальная – показатель выработки теплоэнергии отопительной системой из расчета на 1 кв. м
Данные актуальны для теплых полов на песчано-цементной стяжке толщиной 7 мм, материал покрытия – керамическая плитка. Для других условий требуется корректировка значений с учетом теплопроводности финишной отделки.
Например, при настиле ковролина значение температуры теплоносителя следует повысить на 4-5 °C. Каждый дополнительный сантиметр стяжки понижает отдачу тепла на 5-8%.
Окончательный выбор длины контура
Зная шаг укладки витков и покрываемую площадь несложно определить расход труб. Если полученная величина больше допустимого значения, то необходимо обустраивать несколько контуров.
Оптимально, если петли имеют одинаковую длину – не надо ничего настраивать и балансировать. Однако на практике чаще возникает необходимость разрыва отопительной магистрали на разные участки.
Разброс длин контуров должен оставаться в пределах 30-40%. Зависимо от назначения, формы помещения можно «играть» шагом петли и диаметрами труб
Конкретный пример расчета отопительной ветки
Предположим, что требуется определить параметры теплового контура для дома площадью 60 квадратных метров.
Для расчета понадобятся следующие данные и характеристики:
- габариты помещения: высота – 2,7 м, длина и ширина – 10 и 6 м соответственно;
- в доме 5 металлопластиковых окна по 2 кв. м;
- внешние стены – газобетон, толщина – 50 см, Кт=0,20 Вт/мК;
- дополнительное утепление стен – пеноплистирол 5 см, Кт=0,041 Вт/мК;
- материал потолочного перекрытия – ж/б плита, толщина – 20 см, Кт=1,69 Вт/мК;
- утепление чердака – плиты пенополистирола толщиной 5 см;
- габариты входной двери – 0,9*2,05 м, теплоизоляция – пенополиуретан, слой – 10 см, Кт=0,035 Вт/мК.
Далее рассмотрим пошаговый пример выполнения расчета.
Шаг 1 — расчет теплопотерь через конструктивные элементы
Термическое сопротивление стеновых материалов:
- газобетон: R1=0,5/0,20=2,5 кв.м*К/Вт;
- пенополистирол: R2=0.05/0.041=1.22 кв.м*К/Вт.
Термосопротивление стены в целом составляет: 2,5+1,22=3,57 кв. м*К/Вт. Среднюю температуру в доме принимаем за +23 °C, минимальную на улице 25 °C со знаком минус. Разница показателей – 48 °C.
Подставляя полученные показатели в формулу, получим стеновые теплопотери: Qc=74,55/3,57*48=1002 Вт
По аналогии рассчитываются тепловые издержки через окна, дверь и потолок. Для оценки энергетических потерь через чердак учитывают теплопроводность материала перекрытия и утеплителя
Чтобы подсчитать утечку тепла через окна необходимо определить средневзвешенное значение теплового сопротивления материалов: стеклопакета – 0,5 и профиля – 0,56 кв. м*К/Вт соответственно.
Rо=0,56*0,1+0,5*0,9=0,56 кв.м*К/Вт. Здесь 0,1 и 0,9 – доля каждого материала в оконной конструкции.
Теплопотери окна: Qо=10/0,56*48=857 Вт.
С учетом теплоизоляции двери ее тепловое сопротивление составит: Rд=0,1/0,035=2,86 кв. м*К/Вт. Qд=(0,9*2,05)/2,86*48=31 Вт.
Шаг 2 — тепло на обогрев + общие теплопотери
По данным параметрам помещения, суммарные тепловые издержки составят: Q=4446+2583=7029 Вт.
Шаг 3 — необходимая мощность теплового контура
Рассчитываем оптимальную мощность контура, необходимую для возмещения теплопотерь: N=1.2*7029=8435 Вт.
Далее: q=N/S=8435/60=141 Вт/кв.м.
Исходя из требуемой производительности системы отопления и активной площади помещения, можно определить плотность потока тепла на 1 кв. м
Шаг 4 — определение шага укладки и длины контура
Полученное значение сравниваем с графиком зависимости. Если температура теплоносителя в системе составляет 40 °C, то подойдет контур с параметрами: шаг – 100 мм, диаметр – 20 мм.
Если в магистрали циркулирует вода, разогретая до 50 °C, то интервал между ветками можно увеличить до 15 см и использовать трубу сечением 16 мм.
Считаем длину контура: L=60/0,15*1,1=440 м.
Отдельно необходимо учесть расстояние от коллекторов до тепловой системы.
Как видно из расчетов, для обустройства водяного пола придется делать не менее четырех петель отопления. А как правильно уложить и закрепить трубы, а также другие секреты монтажа мы .
Выводы и полезное видео по теме
Наглядные видеообзоры помогут сделать предварительный расчет длины и шага теплового контура.
Выбор наиболее эффективного расстояния между ветками напольной системы отопления:
Пособие о том, как узнать длину петли эксплуатируемого теплого пола:
Методику расчета нельзя назвать простой. Одновременно следует учитывать множество факторов, влияющих на параметры контура. Если водяной пол планируется использовать как единственный источник тепла, то эту работу лучше доверить профессионалам – ошибки на этапе планирования могут дорого обойтись.
Подсчитываете необходимый метраж труб для теплого пола и их оптимальный диаметр самостоятельно? Может у вас остались вопросы, которые мы не затронули в этом материале? Задавайте их нашим экспертам в блоке комментариев.
Если вы специализируетесь на расчете труб для обустройства водяного теплого пола и у вас есть, что добавить к изложенному выше материалу, пишите, пожалуйста, свои замечания ниже под статьей.