Содержание
- Гидроизоляция подземных частей зданий и сооружений
- Гидроизоляция фундаментов
- Гидроизоляция подвала дома: для чего она необходима?
- Как сделать гидроизоляцию подвала
- Гидроизоляция подвалов: материалы
- Гидроизоляция подвалов изнутри своими руками
- Инженерный анализ видов и способов гидроизоляции подземных частей здания от грунтовых вод
- Гидроизоляция подземных частей зданий и сооружений
- Устройство гидроизоляции фундамента от грунтовых вод
- Гидроизоляция фундамента. Работа над ошибками
- Технологии устройства гидроизоляции фундаментов и стен подземной части зданий
- Добавить комментарий:
- Гидроизоляция фундамента
- СН 301-65 Указания по проектированию гидроизоляции подземных частей зданий и сооружений
Категория:Гидроизоляционные работы
Гидроизоляция подземных частей зданий и сооружений
Вертикальные поверхности фундаментов бесподвальных зданий эффективно изолировать только при условии воздействия на них агрессивной жидкой среды по всем смачиваемым поверхностям.
Фундаменты сложной конструкции с расположенными в них технологическими и другими полостями, каналами, галереями, приямками и прочими пустотами изолируют по всем поверхностям, соприкасающимся с агрессивной средой.
Для защиты стен бесподвальных зданий от капиллярной влаги эффективной гидроизоляцией, которая устраивается по верхней горизонтальной поверхности фундамента, является гидроизоляция из двух слоев гнилостойкой изоляции на битумной основе (изола, гидроизола, фольгоизола, армобитэпа или стеклорубероида), слоя асфальтовой изоляции толщиной 15 мм или слоя цементного раствора состава Ц:П (1:2) толщиной 20…30 мм. Горизонтальную гидроизоляцию наружных стен укладывают на 150…200 мм ниже уровня пола первого этажа (на одном уровне с подготовкой) и на 150…200 мм выше отмостки или отметки тротуара с перекрытием в каждом случае не только стены, но и внутренней штукатурки. Горизонтальную изоляцию внутренних стен укладывают на 100… 150 мм ниже пола первого этажа.
В стене, где подготовка под пол по обе ее стороны находится на разных уровнях, гидроизоляцию располагают в уровне пониженной подготовки, причем вертикальный участок стены, соприкасающийся с грунтом, должен быть изолирован двумя слоями окрасочной битумной изоляции.
При заложении фундаментов на глубину более 1,2 м в водонепроницаемых или слабопроницаемых грунтах возможно скопление воды (в периоды обильных дождей и снеготаяния) в пазухах бывшего котлована (или траншеи). В этом случае по наружным вертикальным поверхностям фундаментных стен эффективно устраивать безнапорную окрасочную битумную изоляцию (вертикальную) .
В зданиях с подвалами защита горизонтальных и вертикальных поверхностей стен от капиллярной грунтовой влаги является обязательной даже при отсутствии грунтовых вод в зоне расположения подвального помещения. Горизонтальную изоляцию от капиллярной сырости выполняют в двух уровнях: на уровне пола подвала и выше уровня отмостки не менее чем на 150 мм (или в уровне верха цоколя).
В качестве вертикальной противокапиллярной изоляции также эффективна окрасочная битумная изоляция (рис. 1).
Рис. 1. Гидроизоляция фундаментов зданий с подвалами: а — при расположении грунтовых вод ниже пола подвала; б — при расположении грунтовых вод выше пола подвала; 1 — защитная стенка; 2 — вертикальная и горизонтальная гидроизоляция от капиллярной влаги или от напора грунтовых вод; 3 — отмостка; 4 — цементная штукатурка; 5 — противокапиллярная горизонтальная гидроизоляция; 6 — наружная стена здания; 7 — внутренняя стена здания; 8 — уровень пола первого этажа; 9 — наружная стена подвала; 10 — внутренняя стена подвала; 11 — уровень пола подвала; 12 — заанкеренная железобетонная плита; 13 — бетонная подготовка; 14 — фундаменты.
При расположении уровня грунтовых вод на 1 м ниже пола подвала в качестве гидроизоляции пола эффективна бетонная подготовка с противокапиллярной изоляцией. Кроме того, под наружными и внутренними стенами и под столбами на уровне подготовки пола подвала располагают изоляционный слой.
При наличии грунтовых вод на уровне до 1 м от пола в его конструкции необходимо предусматривать изолируемый слой и делать сплошной чистый пол из водонепроницаемых материалов — асфальта или цементного раствора с уплотняющими добавками.
При напорах грунтовых вод от 0,1 до 0,2 м масса обычной конструкции пола- подвала является достаточной, чтобы погасить напор. В этом случае горизонтальные и вертикальные поверхности эффективно защищать цементной штукатуркой или окрасочной битумной изоляцией. Слои такой изоляции наносят по бетонной подготовке пола, а также на выровненную раствором наружную поверхность подвальных стен. Снаружи вертикальную изоляцию стен эффективно защищать глиняным замком толщиной 0,25 м, расположенным на 0,5 м выше самого высокого уровня грунтовых вод.
При напоре воды от 0,2 до 0,8 м гидроизоляцию по наружным поверхностям фундаментных стен и гидроизоляцию пола подвала конструктивно выполняют как противонапорную, а полы — утяжеленными. Гидроизоляция пола, уложенная по выравнивающей стяжке бетонной подготовки, обязательно должна быть соединена с нижней горизонтальной изоляцией фундамента и наружной вертикальной изоляцией стен. Изоляцию пола защищают слоем цементного раствора толщиной 20…30 мм, на который для погашения напора укладывают слой тяжелого бетона толщиной 150… 200 мм.
Если уровень грунтовых вод превышает уровень пола подвала более чем на 0,8 м, пол устраивают в виде железобетонной плиты, заведенной под стены здания. На плиту укладывают тяжелый бетон, по которому устраивают чистый пол. Выбор эффективной гидроизоляции в этом случае зависит от величины напора грунтовых вод.
Гидроизоляция фундаментов
При повышенных напорах грунтовых вод следует предусматривать искусственное понижение их уровня.
Горизонтальную гидроизоляцию стен подвала при напорах 0,2…0,8 м и выше укладывают так же, как и в случаях, рассмотренных ранее: на уровне пола подвала и выше тротуара или от-мостки.
Вертикальную гидроизоляцию от напорных вод во всех случаях необходимо поднимать на 50 см выше самого большого (обычно весеннего) уровня стояния грунтовых вод. Выше противонапорной гидроизоляции устраивают противокапиллярную изоляцию.
При применении окрасочной изоляции на вертикальных поверхностях, а оклеечной на горизонтальных их соединяют известными способами.
В песчаных грунтах гидроизоляцию пола можно выполнять непосредственно после возведения стен, а в глинистых и приближающихся по свойствам к ним других грунтах, где осадка здания идет длительное время, следует устраивать замок (или компенсатор), допускающий осадку стен без нарушения сплошности гидроизоляции.
Эффективные виды и конструктивные решения гидроизоляции фундаментов, подвалов и заглубленных частей зданий и сооружений приведены в табл. 66.
Гидроизоляция пешеходных тоннелей (переходов) и служебных помещений при них предусматривается во всех случаях замкнутой по наружному контуру. В транспортных тоннелях перекрытия и боковые стены изолируют также во всех случаях, а изоляция их лотков предусматривается при наличии грунтовых вод выше подошвы фундамента.
Конструкции защитного ограждения гидроизоляции и материалы для его устройства должны быть приняты с учетом действующих нагрузок в процессе строительства и эксплуатации. Как правило, защитные ограждения принимаются: в основании — в виде слоя подготовки (из бетона, железобетона, кирпича и т. п.) толщиной не менее 10 см, выравнивающего по нему слоя мелкозернистого бетона (раствора) класса В15 (марки 100) и над гидроизоляцией в виде слоя мелкозернистого бетона (раствора) класса В15 (марки 100) толщиной 3 см; с наружной стороны стен сооружения — в виде защитных стенок из кирпича глиняного обыкновенного или асфальтового, бетона, железобетона, бетонных блоков, железобетонных плит и т. д.; на перекрытии — в виде слоя армированного бетона класса ВЗО (марки 200) и выше.
Защитный слой, предохраняющий гидроизоляционное покрытие, наклеенное на наклонную или криволинейную поверхность, должен быть армированным. Поверхности укладываемого на покрытие защитного слоя согласно проекту придается поперечный уклон. Гидроизоляцию галерей, коллекторов, проходных каналов устраивают аналогично гидроизоляции тоннелей.
Эффективные виды гидроизоляции, применяемые для транспортных и пешеходных тоннелей, каналов, сооружаемых открытым способом, аналогичны гидроизоляции заглубленных частей зданий и сооружений.
Эффективной гидроизоляцией долговременных подземных промышленных сооружений, в которых она крайне трудно поддается ремонту (поэтому долговечность гидроизоляционных покрытий должна быть не менее 100 лет), является окле-ечная из рулонных материалов или холодная асфальтовая с армированием ее на стыках и швах стеклосеткой. Опыт использования этих видов гидроизоляции для подземных каналов и коллекторов, вагоноопро-кидывателей, транспортных галерей с заглублением до 20 м и насосных станций подтверждает их эффективность.
Рис. 2. Гидроизоляция подземных тоннелей: а — при расположении грунтовых вод ниже сооружения (от грунтовой капиллярной влаги); б — при расположении грунтовых вод выше сооружения (от напора грунтовых вод); 1 — бетонная подготовка; 2 — гидроизоляция от капиллярной влаги или от напора грунтовых вод; 3 — несущая конструкция; 4 — защитная стенка; 5 — защитное покрытие.
При невозможности устройства наружной гидроизоляции, работающей на прижим или значительных ее протечках, эффективной является гидроизоляция из КПЦР. Гидроизоляционное покрытие в этом случае можно наносить прямо на мокрую поверхность бетона при напоре грунтовых вод до 15 м, что позволяет отказаться от водопонижения при производстве работ. При применении этой гидроизоляции взамен оклеечной экономится 10…15 р. на 1 м-.
Гидроизоляцию днища насосных станций, которые в определенные периоды эксплуатации подвергаются сдвигающим нагрузкам от давления грунта или напора воды, эффективно выполнять в виде покрытия из рулонных материалов или горячих литых асфальтов, но только при штраблении подготовки и фундаментной плиты и более надежном выполнении штукатурной гидроизоляции из хамаста или КПЦР либо окрасочной эпоксидной гидроизоляции, обладающих повышенной сдвигоустойчивостью, особенно если будет выполнена присыпка их песком.
При воздействии на внутренние поверхности зданий насосной станции скоростного турбулентного потока воды и гидродинамического давления эффективными являются покрытия из холодной асфальтовой гидроизоляции и КПЦР, обладающие повышенной прочностью и высокой адгезией к бетону.
Штукатурную гидроизоляцию из КПЦР целесообразно применять для наружных покрытий при повышенных требованиях к изоляции по морозостойкости, например в зоне переменного уровня грунтовых вод.
При весьма сложных условиях эксплуатации насосных станций эффективной является окрасочная гидроизоляция из модифицированных эпоксидных смол. Такие покрытия обладают достаточно высокими прочностными и деформативными характеристиками и являются одним из наиболее надежных и долговечных способов гидрозащиты подземных сооружений.
Гидроизоляция из эпоксидно-каменноугольных покрытии успешно работает на береговых насосных станциях АЭС и насосных станциях оросительных систем, в том числе и при высокой сульфатной агрессивности грунтовых вод, а также значительных сдвигающих нагрузках. При применении этой гидроизоляции, обладающей сдвигоустойчивостью, вместо оклеечной и литой, требующих дополнительных мероприятий по их усилению, экономится 100… 180 р. на 1 м2.
Высокая прочность сцепления эпоксидной гидроизоляции с основанием и высокая механическая прочность позволяют применять ее без защитного ограждения.
Наиболее эффективной для защиты подземных сооружений гидроизоляцией является холодная асфальтовая, горячая битумно-резиновая или битумно-полимерная. При применении данных видов гидроизоляции вместо асфальтовой литой стоимость устройства 1 м2 защитного покрытия снижается на 6…8 р.
Холодная асфальтовая гидроизоляция, как показал опыт, может быть эффективно использована для сильнозаглубленных (заглубление до 120 м) помещений, канализационных и водопроводных насосных станций, подземных каналов и коллекторов (заглубление до 20 м); вагоноопрокидывателей, топливных транспортных галерей и других сильно заглубленных производственных помещений с максимальным заглублением до 40 м, а также сухих доков с переменным напором морской воды до 20 м; для внутренней гидроизоляции, работающей на отрыв, ряда подземных галерей и тоннелей при отрывающем напоре до 20 м.
Для устройства гидроизоляционных покрытий подземных сооружений, рассчитанных на напор более 10 м (усиленных), применяется штукатурная холодная асфальтовая гидроизоляция из эмульсионной мастики БАЭМ-40Ц толщиной 15 мм, прикрываемая на горизонтальной поверхности стяжкой из мелкозернистого бетона (раствора) толщиной 25 мм, а на вертикальной поверхности — без какого-либо защитного ограждения — более эффективна, чем применявшиеся для этих же целей: окрасочная гидроизоляция из горячей битумно-резиновой мастики БРМ толщиной 3…4 мм с защитной цементно-латексной накрывкон (10 мм); окрасочная гидроизоляция из эпоксидно-каменноугольной эмали толщиной 2…2,5 мм при соотношении эпоксидной и каменноугольной смолы 1:1; цементная штукатурная гидроизоляция из КПЦР толщиной 10 мм с добавкой до 50 % латекса, без защитного ограждения; горячая асфальтовая штукатурная из асфальтовой мастики, наносимая асфальтометом ВНИИГ-5, общей толщиной 15 мм; оклеечная гидроизоляция из трех слоев стеклорубероида с защитной кирпичной стенкой в полкирпича и наклейкой на горячей битумно-резиновой мастике. Эффективность применения горячей битумно-резиновой мастики для устройства гидроизоляции подземных сооружений обеспечивается при приготовлении и нанесении ее высокомеханизированным агрегатом АГКР-5.
Рис. 3. Гидроизоляция опускных колодцев: а — с наружной и внутренней сторон; б —с наружной стороны; 1 — оклеечная гидроизоляция; 2 — штукатурная цементная гидроизоляция (торкрет); 3 — окрасочная гидроизоляция; 4 — ограждающая конструкция; 5 — днище; 6 — бетонная подготовка.
Для гидроизоляции внешних поверхностей кессонов и опускных колодцев диаметром до 40 м и более, которые при опускании подвергаются значительным механическим воздействиям грунта, эффективным является покрытие из горячих асфальтовых растворов и мастик специальных составов, содержащих добавки коротково-локнистого асбеста и полимеров, с повышенной сдвигоустойчи-востью, прочностью при статических и динамических нагрузках, высокой химической и эрозионной стойкостью. Эксплуатация сооружений со штукатурной гидроизоляцией из асфальтовой смеси надежна в условиях сильно минерализованных грунтовых вод, содержащих свыше 30 000 мг/л сульфатов (рис. 47).
Горячая асфальтовая штукатурка эффективна и при прокладке трубопроводов способом продавливания, для защиты металлического шпунта, если только забивка шпунта не будет осуществляться в зимнее время и его эксплуатация не будет в постоянном контакте с водой (в подводном положении). В этих условиях эффективна защита шпунта эпоксидной модифицированной эмалью ЭКК-100.
Таким образом, для подземных сооружений рекомендуется холодная асфальтовая, горячая битумно-резиновая или битумно-полимерная гидроизоляция, ибо они обладают существенными технико-экономическими преимуществами перед оклеечной гидроизоляцией: стоимость их ниже в три-четыре, а трудоемкость — четыре-пять раз. Оклеечная гидроизоляция эффективна лишь для защиты нетрещиностойких конструкций.
В подземных сооружениях при интенсивных сдвигающих и других механических воздействиях на гидроизоляционное покрытие дает эффект применение цементной штукатурной гидроизоляции из КПЦР или армированной эпоксидно-каменноугольной гидроизоляции.
Для гидроизоляции подземных каналов и трубопроводов эффективными являются покрытия: фторлоновые, эпоксидно-каменноугольные в сочетании с фторлоновой эмалью; поливинилхлорид-ное; эпоксидно-битумное+полиамидная смола (отвердитель); лаки и краски на основе полиуретанового лака. Эти покрытия обладают высокой стойкостью при длительном воздействии горячей воды при 50…70 °С и 5 %-ного раствора серной кислоты. Данные краски хорошо сочетаются с разными стеклотканями и сетками, поэтому их также можно эффективно использовать для армированных гидроизоляционных покрытий.
Герметичность емкостных сооружений обеспечивается за счет применения трещиностойких конструкций из бетонов повышенной водонепроницаемости, надежного замоноличивания стыков между сборными железобетонными элементами и устройства гидроизоляции по внутренним и наружным поверхностям. Вид и конструкция гидроизоляции назначаются в зависимости от плотности применяемого бетона.
Для изолирования емкостных сооружений применяют преимущественно окрасочную гидроизоляцию. В табл. 67 даны конструктивные решения эффективных видов окрасочной гидроизоляции для емкостных сооружений.
Окрасочную битумную изоляцию, армированную стеклотканью, целесообразно применять только для изолирования резервуаров повышенной и особой плотности. Битумно-латексную гидроизоляцию повышенной эластичности и прочности выполняют из шести слоев: нижние два слоя из битумно-латексной эмульсии, последующие третий, четвертый, пятый и шестой слой — из битумной эмульсии с последовательно увеличивающимся содержанием цемента, соответственно до 10, 25, 50 и 75…90%.
Гидроизоляцию из холодной асфальтовой мастики устраивают как на наружных, так и на внутренних поверхностях емкостных сооружений. Горячие мастики рекомендуется применять для литой гидроизоляции.
При устройстве изоляции способом торкретирования толщина его слоя не должна превышать 15 мм. Торкретное покрытие не должно иметь видимых усадочных трещин и при простукивании издавать глухого звука, который свидетельствует об отсутствии сцепления нанесенного слоя с основанием.
По наружной поверхности емкостных сооружений целесообразно устраивать оклеечную изоляцию. При этом количество слоев в покрытиях из битумных материалов должно быть не менее трех. При гидростатическом давлении 0,02…0,05 МПа количество слоев увеличивается до четырех, а при более высоком — до пяти. В покрытии из фольгоизола количество слоев должно быть не менее двух, из поливинилхлоридного и полиэтиленового пластиката — один. При усилении изоляции стыков из рулонных материалов ширина перекрытия стыка в каждую сторону от края смежного сборного железобетонного элемента должна составлять не менее 250 мм.
Над стыками между сборными железобетонными элементами и местами сопряжения стен с днищем и перекрытием окрасочную гидроизоляцию необходимо армировать.
Применять асфальтовые и битумные мастики для изолирования емкостных сооружений, эксплуатируемых при температуре более 40 °С, не разрешается.
Индустриализацию выполнения гидроизоляционных работ повышают, применяя рифленый полиэтилен. Им облицовывают сборные железобетонные элементы в процессе изготовления. Стыки изолируют после монтажа сборных элементов и омоноличивания путем сварки концов полиэтиленовых листов.
Гидроизоляцию емкостных сооружений для нефтепродуктов запрещается выполнять из асфальтовых и битумно-полимерных покрытий из-за их недостаточной нефтестойкости. В связи с этим для гидроизоляции емкостных сооружений целесообразно применять торкрет, стеклоцементную гидроизоляцию или покрытия из КЦР, отличающиеся повышенной надежностью.
Гидроизоляцию емкостных сооружений, к материалу которых предъявляются повышенные требования по плотности, в том числе для хранения нефтепродуктов с высокой температурой (например мазута при температуре до 90 °С), осуществляют с использованием металлических листов. Эффективной для этих сооружений является эпоксидная окрасочная гидроизоляция, выполняемая следующим образом. Поверхность стен и днища тщательно очищают и сушат, а затем грунтуют эпоксидно-каучуковым лаком; раковины и неровности зашпаклевывают эпоксидной шпаклевкой; швы оклеивают эпоксидным армоэластиком из стеклоткани, пропитанной эпоксидно-каучуковой композицией, а затем окрашивают эпоксидной краской. При выполнении эпоксидной окрасочной гидроизоляции взамен металлической стоимость устройства 1 м2 покрытия снижается на 17…18 р., трудозатраты уменьшаются в 5… 6 раз.
Гидроизоляционные работы — Гидроизоляция подземных частей зданий и сооружений
Многие владельцы домов и капитальных гаражей с подвалами сталкиваются с проблемой сырости, грунтовых и паводковых вод, заливающих подвал. Если подобное происходит и в вашем подвале – значит, при его строительстве не была выполнена качественная наружная гидроизоляция. В этой статье мы рассмотрим, как сделать гидроизоляцию подвала изнутри и какие материалы нужны для решения данной задачи.
Гидроизоляция подвала дома: для чего она необходима?
Помимо тех неудобств, с которыми сталкивается владелец затопленного водой подвала (невозможность спуститься в подвал и хранить в нем что-либо), отсутствие или недостаточность гидроизоляции имеет куда более серьезные последствия:
- влага наносит ущерб опорным конструкциям построек, вызывает коррозию металлических элементов, происходит постепенное разрушение стен фундамента. Пока не выполнена гидроизоляция подвала, надежность и долговечность всего дома находится под угрозой.
- в сыром подвале развиваются плесень и грибок, портящие продукты и опасные для организма человека. В таком помещении нельзя хранить овощи.
- затопляемый подвал невозможно использовать в качестве дополнительного помещения дома (в качестве спортзала, мастерской или прачечной): отделка, техника, вещи могут быть повреждены водой.
- насекомые, неприятный запах – это также последствия постоянной сырости в подвале.
Как сделать гидроизоляцию подвала
Самое верное и надежное решение – заниматься гидроизоляцией еще на этапе строительства дома. Наружная гидроизоляция является самой долговечной и прочной защитой дома от грунтовых вод, влаги и сырости. Но если эта работа не была выполнена при строительстве, либо гидроизоляция пришла в негодность, есть два варианта. Первый — освободить фундамент снаружи и заново построить гидроизоляционный слой. Наружная гидроизоляция подвала в частном доме, который уже построен и эксплуатируется, — серьезная работа, очень сложная, затратная и не всегда возможная в силу близости дома к другим постройкам.
Второй способ — гидроизоляция подвала изнутри от грунтовых вод и сырости. Внутренняя изоляция не требует земляных работ. Современные материалы обеспечивают надежную защиту от влаги, они долго служат и просты в применении. Если в вашем доме есть подвал, гидроизоляция своими руками – вполне выполнимая задача.
Выбор вида гидроизоляции зависит от проблем, с которыми вы сталкиваетесь при его эксплуатации. От чего вам нужно защитить ваш подвал?
- Защиту от грунтовых вод обеспечит противонапорная гидроизоляция. Они необходима в тех случаях, если грунтовые воды находятся выше уровня пола и даже стен подвала. Ранее считалось, что данный вид гидроизоляции возможен только снаружи конструкций фундамента. Защитить уже построенные подвалы от грунтовых вод изнутри было практически невозможно из-за отрицательного давления воды снаружи – на отрыв материалов от стен. Сегодня на рынке представлены смеси для гидроизоляции подвалов, позволяющие решить эту проблему. Так, состав Sika® TopSeal-107 подходит для защиты даже от отрицательного давления воды, поэтому его применение возможно как для наружной, так и для внутренней гидроизоляции подвала от грунтовых вод.
- Уровень грунтовых вод низкий, и вы не сталкиваетесь с его сезонным поднятием? В этом случае нужна безнапорная гидроизоляция, чтобы защитить подвал от влаги после обильных осадков или паводков. Для этого необходима обработка стен и пола подвала изнутри специальными материалами.
- Влага проникает в подвал также и по капиллярам в стенах и полу. Для защиты от сырости применяется противокапиллярная проникающая гидроизоляция подвала изнутри.
Гидроизоляция подвалов: материалы
На рынке сегодня представлены различные виды гидроизоляционных материалов. Практически все они пригодны для внутренне обработки подвалов, но различаются способами нанесения, типом воздействия на материалы стен и пола, а также сроком службы. Смеси для гидроизоляции делятся на проникающие и обмазочные.
- Проникающая гидроизоляция подвала предполагает обработку стен и пола специальными составами, которые проникают глубоко в структуру бетона и заполняют в нем капилляры и трещины. Такие смеси, как правило, применяются только по бетонным поверхностям. Некоторая сложность в их использовании заключается в подготовке бетона: он должен быть мокрым, капилляры – открытыми для наилучшего проникновения смеси. Для этого может потребоваться специальная техника.
Не стоит рассчитывать на то, что проникающая гидроизоляция подвала изнутри от грунтовых вод полностью защитит помещение от затопления. Наилучший результат можно получить, сочетая этот вид гидроизоляции с обмазочными смесями. Такое двухслойное покрытие — оптимальная вертикальная гидроизоляция стен подвала и надежная защита пола от воды. - Обмазочные материалы весьма разнообразны и различны по составу: смесь может битумной, битумно-полимерной, полимерной и полимерцементной. К последнему упомянутому нами виду относится состав Sika® TopSeal-107, производимый в России международным концерном Sika. Эта гидроизоляция на цементно-полимерной основе может применяться при внутренних и наружных работах. Как уже говорилось выше, Sika® TopSeal-107 рассчитан и на отрицательное давление воды «на отрыв», что позволяет применять его для защиты подвала изнутри даже от высокого уровня грунтовых вод. К другим преимуществам материала относятся:
- его универсальность. Состав работает на бетонных, кирпичных, каменных поверхностях, то есть практически не имеет ограничений по применению.
- надежная герметизация трещин, пор и пустот в основании, на которое наносится состав.
- защита бетона (кирпича, камня) от воздействия мороза, перепадов температур и агрессивных солей. Также смесь не вызывает коррозии арматуры.
- любая отделка после высыхания. Поверх гидроизоляции Sika можно наносить краску, укладывать плитку, применять другие отделочные материалы.
- безопасность. Гидроизоляция стен подвала, его пола с помощью Sika® TopSeal-107 безопасна для организма. В отличие от токсичных составов, смесь Sika не выделяет вредных веществ, подходит даже для поверхностей, контактирующих с питьевой водой. В подвале, обработанном Sika® TopSeal-107, можно хранить овощи, обустраивать игровые комнаты и т д.
Гидроизоляция подвалов изнутри своими руками
Внутреннюю гидроизоляцию подвала можно проводить в любое время года, за исключением тех сезонных периодов, когда грунтовые воды поднимаются выше уровня пола и проникают в подвал.
Как правильно сделать гидроизоляцию подвала? С помощью материалов Sika эту задачу может выполнить любой домашний мастер за сравнительно короткое время. Компоненты смеси Sika® TopSeal-107 легко смешиваются, а консистенцию состава можно регулировать в зависимости от удобного вам вида нанесения: производитель допускает нанесение кистью или шпателем.
Инженерный анализ видов и способов гидроизоляции подземных частей здания от грунтовых вод
Гидроизоляция стен подвала изнутри материалами Sika требует предварительной очистки поверхностей от пыли, масел, слабо держащихся частиц. Пористым основаниям необходимо смачивание. Гидроизоляция пола подвала предполагает предварительное усиление в углах и стыках: для этого можно применить полимер-каучуковую ленту Sika® SealTape-S. Для качественной гидроизоляции необходимо нанести смесь в два слоя, третий слой может понадобиться в зонах с высокой инфильтрацией воды.
Внутренняя гидроизоляция подвала дома – важная и необходимая работа, которую можно выполнить на любом этапе строительства дома и даже когда он уже эксплуатируется. Сырой подвал – угроза безопасности всей конструкции дома, поэтому решать проблему нужно сегодня, не дожидаясь серьезных последствий. Надежные и простые в использовании материалы для гидроизоляции подвала изнутри от Sika помогут вам сделать подвал сухим, а его использование – комфортным на долгие годы.
Sika
Категория:Гидроизоляционные работы
Гидроизоляция подземных частей зданий и сооружений
Вертикальные поверхности фундаментов бесподвальных зданий эффективно изолировать только при условии воздействия на них агрессивной жидкой среды по всем смачиваемым поверхностям.
Фундаменты сложной конструкции с расположенными в них технологическими и другими полостями, каналами, галереями, приямками и прочими пустотами изолируют по всем поверхностям, соприкасающимся с агрессивной средой.
Для защиты стен бесподвальных зданий от капиллярной влаги эффективной гидроизоляцией, которая устраивается по верхней горизонтальной поверхности фундамента, является гидроизоляция из двух слоев гнилостойкой изоляции на битумной основе (изола, гидроизола, фольгоизола, армобитэпа или стеклорубероида), слоя асфальтовой изоляции толщиной 15 мм или слоя цементного раствора состава Ц:П (1:2) толщиной 20…30 мм. Горизонтальную гидроизоляцию наружных стен укладывают на 150…200 мм ниже уровня пола первого этажа (на одном уровне с подготовкой) и на 150…200 мм выше отмостки или отметки тротуара с перекрытием в каждом случае не только стены, но и внутренней штукатурки. Горизонтальную изоляцию внутренних стен укладывают на 100… 150 мм ниже пола первого этажа.
В стене, где подготовка под пол по обе ее стороны находится на разных уровнях, гидроизоляцию располагают в уровне пониженной подготовки, причем вертикальный участок стены, соприкасающийся с грунтом, должен быть изолирован двумя слоями окрасочной битумной изоляции.
При заложении фундаментов на глубину более 1,2 м в водонепроницаемых или слабопроницаемых грунтах возможно скопление воды (в периоды обильных дождей и снеготаяния) в пазухах бывшего котлована (или траншеи). В этом случае по наружным вертикальным поверхностям фундаментных стен эффективно устраивать безнапорную окрасочную битумную изоляцию (вертикальную) .
В зданиях с подвалами защита горизонтальных и вертикальных поверхностей стен от капиллярной грунтовой влаги является обязательной даже при отсутствии грунтовых вод в зоне расположения подвального помещения.
Устройство гидроизоляции фундамента от грунтовых вод
Горизонтальную изоляцию от капиллярной сырости выполняют в двух уровнях: на уровне пола подвала и выше уровня отмостки не менее чем на 150 мм (или в уровне верха цоколя). В качестве вертикальной противокапиллярной изоляции также эффективна окрасочная битумная изоляция (рис. 1).
Рис. 1. Гидроизоляция фундаментов зданий с подвалами: а — при расположении грунтовых вод ниже пола подвала; б — при расположении грунтовых вод выше пола подвала; 1 — защитная стенка; 2 — вертикальная и горизонтальная гидроизоляция от капиллярной влаги или от напора грунтовых вод; 3 — отмостка; 4 — цементная штукатурка; 5 — противокапиллярная горизонтальная гидроизоляция; 6 — наружная стена здания; 7 — внутренняя стена здания; 8 — уровень пола первого этажа; 9 — наружная стена подвала; 10 — внутренняя стена подвала; 11 — уровень пола подвала; 12 — заанкеренная железобетонная плита; 13 — бетонная подготовка; 14 — фундаменты.
При расположении уровня грунтовых вод на 1 м ниже пола подвала в качестве гидроизоляции пола эффективна бетонная подготовка с противокапиллярной изоляцией. Кроме того, под наружными и внутренними стенами и под столбами на уровне подготовки пола подвала располагают изоляционный слой.
При наличии грунтовых вод на уровне до 1 м от пола в его конструкции необходимо предусматривать изолируемый слой и делать сплошной чистый пол из водонепроницаемых материалов — асфальта или цементного раствора с уплотняющими добавками.
При напорах грунтовых вод от 0,1 до 0,2 м масса обычной конструкции пола- подвала является достаточной, чтобы погасить напор. В этом случае горизонтальные и вертикальные поверхности эффективно защищать цементной штукатуркой или окрасочной битумной изоляцией. Слои такой изоляции наносят по бетонной подготовке пола, а также на выровненную раствором наружную поверхность подвальных стен. Снаружи вертикальную изоляцию стен эффективно защищать глиняным замком толщиной 0,25 м, расположенным на 0,5 м выше самого высокого уровня грунтовых вод.
При напоре воды от 0,2 до 0,8 м гидроизоляцию по наружным поверхностям фундаментных стен и гидроизоляцию пола подвала конструктивно выполняют как противонапорную, а полы — утяжеленными. Гидроизоляция пола, уложенная по выравнивающей стяжке бетонной подготовки, обязательно должна быть соединена с нижней горизонтальной изоляцией фундамента и наружной вертикальной изоляцией стен. Изоляцию пола защищают слоем цементного раствора толщиной 20…30 мм, на который для погашения напора укладывают слой тяжелого бетона толщиной 150… 200 мм.
Если уровень грунтовых вод превышает уровень пола подвала более чем на 0,8 м, пол устраивают в виде железобетонной плиты, заведенной под стены здания. На плиту укладывают тяжелый бетон, по которому устраивают чистый пол. Выбор эффективной гидроизоляции в этом случае зависит от величины напора грунтовых вод. При повышенных напорах грунтовых вод следует предусматривать искусственное понижение их уровня.
Горизонтальную гидроизоляцию стен подвала при напорах 0,2…0,8 м и выше укладывают так же, как и в случаях, рассмотренных ранее: на уровне пола подвала и выше тротуара или от-мостки.
Вертикальную гидроизоляцию от напорных вод во всех случаях необходимо поднимать на 50 см выше самого большого (обычно весеннего) уровня стояния грунтовых вод. Выше противонапорной гидроизоляции устраивают противокапиллярную изоляцию.
При применении окрасочной изоляции на вертикальных поверхностях, а оклеечной на горизонтальных их соединяют известными способами.
В песчаных грунтах гидроизоляцию пола можно выполнять непосредственно после возведения стен, а в глинистых и приближающихся по свойствам к ним других грунтах, где осадка здания идет длительное время, следует устраивать замок (или компенсатор), допускающий осадку стен без нарушения сплошности гидроизоляции.
Эффективные виды и конструктивные решения гидроизоляции фундаментов, подвалов и заглубленных частей зданий и сооружений приведены в табл. 66.
Гидроизоляция пешеходных тоннелей (переходов) и служебных помещений при них предусматривается во всех случаях замкнутой по наружному контуру. В транспортных тоннелях перекрытия и боковые стены изолируют также во всех случаях, а изоляция их лотков предусматривается при наличии грунтовых вод выше подошвы фундамента.
Конструкции защитного ограждения гидроизоляции и материалы для его устройства должны быть приняты с учетом действующих нагрузок в процессе строительства и эксплуатации. Как правило, защитные ограждения принимаются: в основании — в виде слоя подготовки (из бетона, железобетона, кирпича и т. п.) толщиной не менее 10 см, выравнивающего по нему слоя мелкозернистого бетона (раствора) класса В15 (марки 100) и над гидроизоляцией в виде слоя мелкозернистого бетона (раствора) класса В15 (марки 100) толщиной 3 см; с наружной стороны стен сооружения — в виде защитных стенок из кирпича глиняного обыкновенного или асфальтового, бетона, железобетона, бетонных блоков, железобетонных плит и т. д.; на перекрытии — в виде слоя армированного бетона класса ВЗО (марки 200) и выше.
Защитный слой, предохраняющий гидроизоляционное покрытие, наклеенное на наклонную или криволинейную поверхность, должен быть армированным. Поверхности укладываемого на покрытие защитного слоя согласно проекту придается поперечный уклон. Гидроизоляцию галерей, коллекторов, проходных каналов устраивают аналогично гидроизоляции тоннелей.
Эффективные виды гидроизоляции, применяемые для транспортных и пешеходных тоннелей, каналов, сооружаемых открытым способом, аналогичны гидроизоляции заглубленных частей зданий и сооружений.
Эффективной гидроизоляцией долговременных подземных промышленных сооружений, в которых она крайне трудно поддается ремонту (поэтому долговечность гидроизоляционных покрытий должна быть не менее 100 лет), является окле-ечная из рулонных материалов или холодная асфальтовая с армированием ее на стыках и швах стеклосеткой. Опыт использования этих видов гидроизоляции для подземных каналов и коллекторов, вагоноопро-кидывателей, транспортных галерей с заглублением до 20 м и насосных станций подтверждает их эффективность.
Рис. 2. Гидроизоляция подземных тоннелей: а — при расположении грунтовых вод ниже сооружения (от грунтовой капиллярной влаги); б — при расположении грунтовых вод выше сооружения (от напора грунтовых вод); 1 — бетонная подготовка; 2 — гидроизоляция от капиллярной влаги или от напора грунтовых вод; 3 — несущая конструкция; 4 — защитная стенка; 5 — защитное покрытие.
При невозможности устройства наружной гидроизоляции, работающей на прижим или значительных ее протечках, эффективной является гидроизоляция из КПЦР. Гидроизоляционное покрытие в этом случае можно наносить прямо на мокрую поверхность бетона при напоре грунтовых вод до 15 м, что позволяет отказаться от водопонижения при производстве работ. При применении этой гидроизоляции взамен оклеечной экономится 10…15 р. на 1 м-.
Гидроизоляцию днища насосных станций, которые в определенные периоды эксплуатации подвергаются сдвигающим нагрузкам от давления грунта или напора воды, эффективно выполнять в виде покрытия из рулонных материалов или горячих литых асфальтов, но только при штраблении подготовки и фундаментной плиты и более надежном выполнении штукатурной гидроизоляции из хамаста или КПЦР либо окрасочной эпоксидной гидроизоляции, обладающих повышенной сдвигоустойчивостью, особенно если будет выполнена присыпка их песком.
При воздействии на внутренние поверхности зданий насосной станции скоростного турбулентного потока воды и гидродинамического давления эффективными являются покрытия из холодной асфальтовой гидроизоляции и КПЦР, обладающие повышенной прочностью и высокой адгезией к бетону.
Штукатурную гидроизоляцию из КПЦР целесообразно применять для наружных покрытий при повышенных требованиях к изоляции по морозостойкости, например в зоне переменного уровня грунтовых вод.
При весьма сложных условиях эксплуатации насосных станций эффективной является окрасочная гидроизоляция из модифицированных эпоксидных смол. Такие покрытия обладают достаточно высокими прочностными и деформативными характеристиками и являются одним из наиболее надежных и долговечных способов гидрозащиты подземных сооружений.
Гидроизоляция из эпоксидно-каменноугольных покрытии успешно работает на береговых насосных станциях АЭС и насосных станциях оросительных систем, в том числе и при высокой сульфатной агрессивности грунтовых вод, а также значительных сдвигающих нагрузках. При применении этой гидроизоляции, обладающей сдвигоустойчивостью, вместо оклеечной и литой, требующих дополнительных мероприятий по их усилению, экономится 100… 180 р. на 1 м2.
Высокая прочность сцепления эпоксидной гидроизоляции с основанием и высокая механическая прочность позволяют применять ее без защитного ограждения.
Наиболее эффективной для защиты подземных сооружений гидроизоляцией является холодная асфальтовая, горячая битумно-резиновая или битумно-полимерная. При применении данных видов гидроизоляции вместо асфальтовой литой стоимость устройства 1 м2 защитного покрытия снижается на 6…8 р.
Холодная асфальтовая гидроизоляция, как показал опыт, может быть эффективно использована для сильнозаглубленных (заглубление до 120 м) помещений, канализационных и водопроводных насосных станций, подземных каналов и коллекторов (заглубление до 20 м); вагоноопрокидывателей, топливных транспортных галерей и других сильно заглубленных производственных помещений с максимальным заглублением до 40 м, а также сухих доков с переменным напором морской воды до 20 м; для внутренней гидроизоляции, работающей на отрыв, ряда подземных галерей и тоннелей при отрывающем напоре до 20 м.
Для устройства гидроизоляционных покрытий подземных сооружений, рассчитанных на напор более 10 м (усиленных), применяется штукатурная холодная асфальтовая гидроизоляция из эмульсионной мастики БАЭМ-40Ц толщиной 15 мм, прикрываемая на горизонтальной поверхности стяжкой из мелкозернистого бетона (раствора) толщиной 25 мм, а на вертикальной поверхности — без какого-либо защитного ограждения — более эффективна, чем применявшиеся для этих же целей: окрасочная гидроизоляция из горячей битумно-резиновой мастики БРМ толщиной 3…4 мм с защитной цементно-латексной накрывкон (10 мм); окрасочная гидроизоляция из эпоксидно-каменноугольной эмали толщиной 2…2,5 мм при соотношении эпоксидной и каменноугольной смолы 1:1; цементная штукатурная гидроизоляция из КПЦР толщиной 10 мм с добавкой до 50 % латекса, без защитного ограждения; горячая асфальтовая штукатурная из асфальтовой мастики, наносимая асфальтометом ВНИИГ-5, общей толщиной 15 мм; оклеечная гидроизоляция из трех слоев стеклорубероида с защитной кирпичной стенкой в полкирпича и наклейкой на горячей битумно-резиновой мастике. Эффективность применения горячей битумно-резиновой мастики для устройства гидроизоляции подземных сооружений обеспечивается при приготовлении и нанесении ее высокомеханизированным агрегатом АГКР-5.
Рис. 3. Гидроизоляция опускных колодцев: а — с наружной и внутренней сторон; б —с наружной стороны; 1 — оклеечная гидроизоляция; 2 — штукатурная цементная гидроизоляция (торкрет); 3 — окрасочная гидроизоляция; 4 — ограждающая конструкция; 5 — днище; 6 — бетонная подготовка.
Для гидроизоляции внешних поверхностей кессонов и опускных колодцев диаметром до 40 м и более, которые при опускании подвергаются значительным механическим воздействиям грунта, эффективным является покрытие из горячих асфальтовых растворов и мастик специальных составов, содержащих добавки коротково-локнистого асбеста и полимеров, с повышенной сдвигоустойчи-востью, прочностью при статических и динамических нагрузках, высокой химической и эрозионной стойкостью. Эксплуатация сооружений со штукатурной гидроизоляцией из асфальтовой смеси надежна в условиях сильно минерализованных грунтовых вод, содержащих свыше 30 000 мг/л сульфатов (рис. 47).
Горячая асфальтовая штукатурка эффективна и при прокладке трубопроводов способом продавливания, для защиты металлического шпунта, если только забивка шпунта не будет осуществляться в зимнее время и его эксплуатация не будет в постоянном контакте с водой (в подводном положении). В этих условиях эффективна защита шпунта эпоксидной модифицированной эмалью ЭКК-100.
Таким образом, для подземных сооружений рекомендуется холодная асфальтовая, горячая битумно-резиновая или битумно-полимерная гидроизоляция, ибо они обладают существенными технико-экономическими преимуществами перед оклеечной гидроизоляцией: стоимость их ниже в три-четыре, а трудоемкость — четыре-пять раз. Оклеечная гидроизоляция эффективна лишь для защиты нетрещиностойких конструкций.
В подземных сооружениях при интенсивных сдвигающих и других механических воздействиях на гидроизоляционное покрытие дает эффект применение цементной штукатурной гидроизоляции из КПЦР или армированной эпоксидно-каменноугольной гидроизоляции.
Для гидроизоляции подземных каналов и трубопроводов эффективными являются покрытия: фторлоновые, эпоксидно-каменноугольные в сочетании с фторлоновой эмалью; поливинилхлорид-ное; эпоксидно-битумное+полиамидная смола (отвердитель); лаки и краски на основе полиуретанового лака. Эти покрытия обладают высокой стойкостью при длительном воздействии горячей воды при 50…70 °С и 5 %-ного раствора серной кислоты. Данные краски хорошо сочетаются с разными стеклотканями и сетками, поэтому их также можно эффективно использовать для армированных гидроизоляционных покрытий.
Герметичность емкостных сооружений обеспечивается за счет применения трещиностойких конструкций из бетонов повышенной водонепроницаемости, надежного замоноличивания стыков между сборными железобетонными элементами и устройства гидроизоляции по внутренним и наружным поверхностям. Вид и конструкция гидроизоляции назначаются в зависимости от плотности применяемого бетона.
Для изолирования емкостных сооружений применяют преимущественно окрасочную гидроизоляцию. В табл. 67 даны конструктивные решения эффективных видов окрасочной гидроизоляции для емкостных сооружений.
Окрасочную битумную изоляцию, армированную стеклотканью, целесообразно применять только для изолирования резервуаров повышенной и особой плотности. Битумно-латексную гидроизоляцию повышенной эластичности и прочности выполняют из шести слоев: нижние два слоя из битумно-латексной эмульсии, последующие третий, четвертый, пятый и шестой слой — из битумной эмульсии с последовательно увеличивающимся содержанием цемента, соответственно до 10, 25, 50 и 75…90%.
Гидроизоляцию из холодной асфальтовой мастики устраивают как на наружных, так и на внутренних поверхностях емкостных сооружений. Горячие мастики рекомендуется применять для литой гидроизоляции.
При устройстве изоляции способом торкретирования толщина его слоя не должна превышать 15 мм. Торкретное покрытие не должно иметь видимых усадочных трещин и при простукивании издавать глухого звука, который свидетельствует об отсутствии сцепления нанесенного слоя с основанием.
По наружной поверхности емкостных сооружений целесообразно устраивать оклеечную изоляцию. При этом количество слоев в покрытиях из битумных материалов должно быть не менее трех. При гидростатическом давлении 0,02…0,05 МПа количество слоев увеличивается до четырех, а при более высоком — до пяти. В покрытии из фольгоизола количество слоев должно быть не менее двух, из поливинилхлоридного и полиэтиленового пластиката — один. При усилении изоляции стыков из рулонных материалов ширина перекрытия стыка в каждую сторону от края смежного сборного железобетонного элемента должна составлять не менее 250 мм.
Над стыками между сборными железобетонными элементами и местами сопряжения стен с днищем и перекрытием окрасочную гидроизоляцию необходимо армировать.
Применять асфальтовые и битумные мастики для изолирования емкостных сооружений, эксплуатируемых при температуре более 40 °С, не разрешается.
Индустриализацию выполнения гидроизоляционных работ повышают, применяя рифленый полиэтилен. Им облицовывают сборные железобетонные элементы в процессе изготовления. Стыки изолируют после монтажа сборных элементов и омоноличивания путем сварки концов полиэтиленовых листов.
Гидроизоляцию емкостных сооружений для нефтепродуктов запрещается выполнять из асфальтовых и битумно-полимерных покрытий из-за их недостаточной нефтестойкости. В связи с этим для гидроизоляции емкостных сооружений целесообразно применять торкрет, стеклоцементную гидроизоляцию или покрытия из КЦР, отличающиеся повышенной надежностью.
Гидроизоляцию емкостных сооружений, к материалу которых предъявляются повышенные требования по плотности, в том числе для хранения нефтепродуктов с высокой температурой (например мазута при температуре до 90 °С), осуществляют с использованием металлических листов. Эффективной для этих сооружений является эпоксидная окрасочная гидроизоляция, выполняемая следующим образом. Поверхность стен и днища тщательно очищают и сушат, а затем грунтуют эпоксидно-каучуковым лаком; раковины и неровности зашпаклевывают эпоксидной шпаклевкой; швы оклеивают эпоксидным армоэластиком из стеклоткани, пропитанной эпоксидно-каучуковой композицией, а затем окрашивают эпоксидной краской. При выполнении эпоксидной окрасочной гидроизоляции взамен металлической стоимость устройства 1 м2 покрытия снижается на 17…18 р., трудозатраты уменьшаются в 5… 6 раз.
Гидроизоляционные работы — Гидроизоляция подземных частей зданий и сооружений
Гидроизоляция фундамента. Работа над ошибками
24/11/2008 16:30:09
В процессе возведения фундамента мне потребовалось сделать гидроизоляцию. Строители, которые, как правило, работают еще по дореволюционным технологиям, предложили выполнить битумную гидроизоляцию.
Технологии устройства гидроизоляции фундаментов и стен подземной части зданий
Однако я, будучи неопытным в области строительства, принял другое решение. Это уже к моменту отделки человек сможет с легкостью объяснить разницу между косоуром и тетевой, рассказать о назначении мауэрлата или вспомнить правильное соответствие песка щебня и цемента в бетоне марки М-200. А на этапе фундамента спрос не велик. Поэтому и в качестве гидроизоляции сборного фундамента из железобетонных блоков была выбрана обмазочная гидроизоляция цементной смесью ВБС-Гидрощит компании «ВолгаБытСервис». Этот материал представляет из себя цементно-песчаную смесь с полимерными добавками, которые и должны выполнять гидроизолирующие функции. Работы проводились в четком соответствии с инструкцией. Гидроизоляция была выполнена в четыре слоя, соблюдая перпендикулярность слоев. Общая толщина гидроизоляции достигла 6-7мм. Казалось, что это на века…
Однако ближайшая весна показала, что уверенность была напрасной. В подвале оказалась вода, а точнее много воды. Помещение ниже уровня земли скорее походило не на подвал, а на вполне приличный бассейн и если бы не весенняя прохлада, то вполне можно было и поплавать. Стены были влажными. Неужели материал ВБС-Гидрощит был выбран неправильно? В чем была причина? Я решил провести эксперимент.
Я обработал составом ВБС-Гидрощит бетонную поверхность (плиты перекрытий) над подвалом в два слоя. Причем обработке подверглась как сама плита, так и шов между плитами. Выждав необходимое количество времени, я стал обильно поливать это место водой. Вода просачивалась как сквозь шов, так и сквозь монолитную часть плиты… Вот так дела! А в инструкции было написано, что двух слоев достаточно… Не поверив своим глазам, я нанес еще два слоя. Таким образом исследуемое место было покрыто 4-мы слоями материала. Снова включена вода… Первым и достаточно скоро сдался шов. Намного меньше, чем в первый раз, но вода пошла. Сдался и тот участок, под которым была монолитная плита. Капель, как в первый раз не было, но влага проступила в виде пятна. Таким образом данный эксперимент показал, что состав ВБС-Гидрощит неприменим для гидроизоляции ответственных узлов, участков с большим содержанием влаги в грунте, а также для гидроизоляции сборных фундаментов. Гидроизоляционная мембрана, которая создается с помощью цементно-песчаных смесей весьма чувствительна к механическим воздействиям. На практике же швы, особенно фундаментные, особенно в период усадки, всегда находятся в движении, образуя трещины и разрушая мембрану. Таким образом цементно-песчаные составы для гидроизоляции лучше подходят для монолитных фундаментов, да и то, как оказалось, с оговоркой.
Теперь мне предстояла большая работа, работа над ошибками. Выбрав с помощью «евро-копателей» 70 м3 влажного суглинистого грунта вокруг фундамента, я стал думать чем сделать гидроизоляцию в этот раз. Ошибиться не хотелось. Проанализировав большое количество различной рекламной и не только информации я пришел к выводу, что в этот раз буду использовать битумно-полимерный наплавляемый материал Унифлекс компании Техно-Николь. В каталоге компании присутствует с десяток материалов, подходящих для гидроизоляции, и сначала я был ориентирован на Техноэласт Мост, но опытные люди, которым я в этот раз доверял, заверили меня, что при сложной конфигурации цоколя Унифлекс, наплавляемый в два слоя будет лучше, поскольку имеет меньшую массу и лучшую адгезию. Техноэласт Мост, якобы, часто под своей тяжестью отваливается, хотя он гораздо толще и эластичнее. Решено. Унифлекс в два слоя. Так как теплопроводность бетонных блоков достаточно высока, было также принято решение сделать теплоизоляцию плитами из экструдированного пенополистирола Roofmate компании Styrofoam. Результат частично показан на фото.
Плиты пенополистирола крепились к гидроизоляции с помощью битумной мастики, оставшейся после монтажа кровли на основе гибкой черепицы Шинглас от Техно-Николь. Крепление плит битумной мастикой было необходимо только на время монтажа, иначе плиты бы унесло ветром, так как после выполнения всех работ они будут придавлены грунтом и в любом случае никуда не денутся. Для засыпки был использован в основном суглинистый грунт, который, как пишут в умных книгах, называется глиняным замком и задерживает влагу. Хотя в литературе встречается и обратная точка зрения, когда обратную засыпку рекомендуется производить песком. Минус суглинка в том, что такой тип грунта относится к пучинистым грунтам, а значит потенциально больше вредит отмостке и гидроизоляции. Поэтому отмостку всегда нужно устраивать по песчаной подушке. Плиты пенополистрола в каком-то смысле помимо теплоизоляции защищают гидроизоляцию от механического воздействия грунта, а также насекомых и грызунов. Забегая вперед скажу, что через большой период времени мне потребовалось откопать частично цоколь. Эти работы не были связаны с гидроизоляцией. Так вот плиты не имели существенных повреждений от насекомых. Грызунами там даже и не пахло. Плиты, думается, прослужат как минимум 25-35 лет. Единственное, что по-настоящему боится пенополистирол — это ультрафиолета. Те участки плит, которые не были засыпаны землей после 3-х месяцев на солнце просто рассыпались…
В моей местности уровень грунтовых вод невысок, поэтому я не стал устраивать дренажные системы фундамента. Но для тех, у кого УГВ высок производители и продавцы могут предложить большое количество различных технологий, суть которых сводится к сбору и отводу вод от фундамента в дренажные, поглотительные колодцы.
Прошло уже два года, а значит две зимы весны и две весны, с момента проведения работ. Ни единого намека на протечку. Таким образом для гидроизоляции фундамента из сборных железобетонных блоков можно рекомендовать битумно-полимерные наплавляемые материалы, которые выпускаются не только компанией Техно-Николь, но и другими отечественными и зарубежными производителями.
Автор: Andrey_B
Любое использование материалов сайта возможно только с разрешения автора и с обязательным указанием источника.
Добавить комментарий:
Сортировка комментариев:Последние сверху| Первые сверху
2015-01-15 18:57:40 | Нуржан
Спасибо за сайт и кучу полезных советов!
У меня вопрос не совсем по теме. Каркасно-камышитовый дом 50-60х годов постройки, сухой, но сквозняковый)) В подполе пустота, высота около 70-100 см, предстоит выбор, утеплять деревянные полы снизу ватой (стекло-минеральной) или демонтировать дерево и засыпать грунтом на который уже сделать стяжку + теплый пол. Какое будет ваше мнение?
Спасибо.
2013-05-24 15:56:38 | Andrey_B
Отваливается не сразу, а спустя несколько лет.
В основном в тех местах, которые выше уровня грунта, но не только. То есть по краям. Края нужно очень тщательно и качественно клеить/наплавлять.
2013-05-24 13:35:36 | Олег
Тьфу-тьфу-тьфу… у меня пока все держится… готовлюсь к обратной отсыпке
2013-05-23 18:29:38 | Andrey_B
Олег, битумным праймером, конечно, поверхности обрабатывались. Кстати, это не гарантирует, что не отвалится. В некоторых местах все-таки отвалилось.
2013-05-23 17:46:43 | Олег
На мой взгляд, опытные люди и правы и не неправы одновременно. Два слоя конечно же надежнее, чем один. Но у данных материалов разные показатели, причем в пользу «Моста» особенно срок службы. А для того, чтобы крепче держалось и не отваливалось от бетона, поверхность сначала надо обработать битумным праймером №1, того же ТехноНиколь.
У себя так сделал — висит себе, не отваливается. А когда песком прижмется вообще никуда не денется.
2012-11-20 16:11:02 | Andrey_B
Alex, вы будете смеяться, но отмостки у меня до сих пор нет. Но делать ее буду из брусчатки на песок или песчано-цементную смесь.
2012-11-20 13:08:03 | Alex
Если можно, расскажите пожалуйста, как и из чего сделали отмостку?
Связаться с автором сайта
Этапы работы по устройству горизонтальной гидроизоляции стен.
1. Кладку (или заливку при монолитной конструкции) цокольной части стены останавливают на проектной отметке, на которой, согласно проекту, предусмотрена горизонтальная гидроизоляция. Если в проекте это не предусмотрено, следует остановить возведение цоколя на уровне, который расположен на 10 — 20 см ниже низа будущего перекрытия первого этажа.
2. Если стены из кирпича или другого штучного материала, необходимо тщательно заделать все вертикальные швы на данной отметке тем же раствором, которым производилась кладка. Горизонтальная поверхность должна быть сухой и чистой.
3. Приготовить гидроизоляционный материал. Цементную смесь с уплотняющими добавками можно приобрести в строительном магазине. Перед нанесением ее затворяют водой и при необходимости смешивают с песком согласно инструкции на упаковке. Рулонные материалы в особой подготовке не нуждаются. Если стена из монолитного железобетона, следует выбрать рулонную гидроизоляцию.
Гидроизоляция фундамента
Если выбрана обмазочная гидроизоляция (рис. 3), с помощью кельмы и полутерка наносят и разравнивают горизонтальный слой раствора толщиной 2 — 3 см, проверяя ровность поверхности с помощью горизонтального уровня. На этот же слой раствора можно укладывать следующий ряд кирпича или другого штучного материала.
5. Если выбрана рулонная гидроизоляция (рис. 4), ее укладывают, в зависимости от взятого материала, в один или два слоя, насухо, на мастику или путем наплавления с помощью горелки. Толь укладывают в два слоя насухо, после чего продолжают возводить стену. Рубероид и другие оклеечные битумные материалы укладывают на высохший ровный слой раствора (если стена из кладки) или на очищенную подготовленную поверхность бетона (если стена монолитная), наклеивая на битумную мастику (слой мастики — 3 мм), затем на первый слой таким же образом клеят второй слой рубероида. Рулонную оклеечную изоляцию наклеивают участками длиной 50 — 100 см (это обусловлено временем высыхания мастики), куски изоляционного материала соединяют внахлест на длину 10 см. Если рулонный материал укладывают насухо, куски могут быть максимально возможной длины, стыки также соединяют внахлест. Верхний слой оклеечной гидроизоляции покрывают грунтовкой (универсальной или специальной), после ее высыхания наносят слой мастики толщиной 3 мм и продолжают возведение стены.
Если рельеф на участке строительства имеет сильный перепад, часто проектом предусматривают дополнительные слои горизонтальной гидроизоляции в местах пониженного рельефа (рис. 5). Технология укладки каждого слоя не отличается от описанной выше. Такой метод целесообразен, когда нижние перекрытия дома расположены в разных его частях на разных уровнях и нет возможности отсечь подсос влаги от перекрытия и выше расположенных стен одним слоем горизонтальной изоляции.
Увлажненные несущие конструкции и утеплитель обладают гораздо худшими тепло- и звукоизоляционными свойствами, поэтому очень важно защитить их от проникновения и скапливания влаги и образования конденсата.
Утепление и гидроизоляция дома и квартиры. Е. В. Колосов
Окрасочная гидроизоляция представляет собой водонепроницаемое покрытие, создаваемое путем последовательного нанесения на изолируемую поверхность нескольких слоев материала. Основными видами окрасочной гидроизоляции являются битумная, битумно-полимерная, полимерная и полимерцементпая.
Окрасочную битумную гидроизоляцию создают путем нанесения Двух — четырех слоев битумных мастик, битумных эмульсий и битумных паст. Толщина покрытия 2—6 мм.
Прочность сцепления битумной гидроизоляции обеспечивается только при условии, если она достаточно глубоко проникла в пористое основание. Для предупреждения оползания на вертикальных и близких к ним поверхностях требуется устройство защитных конструкций и армирование между слоями изоляции на углах и гранях сеткой или тканью.
Для повышения пластичности окрасочных битумных покрытии и уменьшения их хрупкости при отрицательных температурах необходимо в состав битумной мастики вводить пластификаторы, а для повышения температуры размягчения — пылевидный и волокнистый| наполнитель.
По водонепроницаемости и морозостойкости наилучшими являются покрытия из горячих мастик, за ними следуют покрытия из холодных битумных мастик, эмульсий и эмульсионных паст. Последние при многократном промерзании покрываются многочисленными мелкими трещинами.
Физико-механические и технологические свойства окрасочных битумных и битумно-полимерных видов гидроизоляции приведены в табл. 62.
Окрасочная битумно-полимерная гидроизоляция. Для улучшения физико-механических свойств битумной гидроизоляции в ее состав вводят полимеры. Наибольшее распространение для этих целей получили каучукоподобные полимеры. Основными типами битумно-полимерпой гидроизоляции являются битумно-латексная, битумно-наиритовая и др.
Ьитумна-латексная гидроизоляция имеет две разновидности. Исходным материалом для одной из них — битумно-латеконой гидроизоляции (БЛГ) — являются битумные эмульсии и латексы, содержащие большое количество йоды. Это предопределяет пористость структуры готового покрытия и объясняет его способность к сравнительно высокому водонасыщению. Формирование этого покрытия происходит только при положительных температурах (не ниже 5°С). При температуре наружного воздуха выше 30° С покрытие размягчается. В процессе формирования покрытие уменьшается по толщине (за счет уплотнения), поэтому БЛГ следует наносить толщиной, в 1,5—2 раза превышающей эксплуатационную, которая должна составлять 5—6 мм. БЛГ можно устраивать как по сухим, так и по влажным бетонным поверхностям. Швы и предполагаемые места раскрытия трещин армируются стеклотканью или другой тканью.
Вторая разновидность битумно-латексных покрытий — эластимы. В отличие от БЛГ эта гидроизоляция имеет достаточно однородную и плотную структуру благодаря применению разжиженного в бензине битума и стабилизированного латекса. Для стабилизации латекса применяют растворы жидкого стекла, поташа или казеина.
Гидроизоляцию эластим создают, нанося не менее трех слоев холодных мастик. При введении наполнителей мастику можно применять для устройства штукатурной гидроизоляции, которую наносят в три слоя общей толщиной 6—12 мм. Па вертикальных поверхностях высотой более 3 м гидроизоляцию следует защищать жестким ограждением.
Битумно-иаиритовую гидроизоляцию (БНГ) устраивают путем последовательного нанесения битумно-наиритовой мастики, приготовляемой в заводских условиях или в специальных мастерских. Покрытие формируется в течение 30 сут после нанесения, что опреде-‘ ляст и срок засыпки (обсыпки) грунтом. Общая толщина БНГ должна составлять 3—4 мм. Эту гидроизоляцию можно устраивать при температурах до —15° С.
Еитумно-этинолевая гидроизоляция обладает относительно высокой водоустойчивостью, является химически стойкой, имеет высокое сцепление с изолируемой поверхностью. Однако при низкой влажности воздуха, а также при температуре выше 50е С и действия дневного света этинолевая пленка быстро окисляется, растрескивается и отслаивается. В связи с этим устройство покрытий на основе лака этиноль возможно только на конструкциях, защищен-. ных от света, и при эксплуатационных температурах, не превышающих -|-50°С.
СН 301-65 Указания по проектированию гидроизоляции подземных частей зданий и сооружений
Для повышения долговечности этинолевых покрытий в лак вводят добавки: битумы марок БН-Ш или БН-IV, асбест VI или VII сорта, андезнтовую муку, тонкомолотый графит.
Битумпо-этинолевые составы могут быть использованы в зимнее время для устройства временной гидроизоляции — в тех случаях, когда другие, более надежные виды покрытий, выполнены быть ие могут. Покрытия на основе лака этиноль нетрещиностойкие.
Кроме названных, в настоящее время разработано много других битумно-полимерных покрытий (например, битумно-полистирольных, битумно-полиэтиленовых, эпоксидно-битумных и др.), которые проходят стадии освоения и внедрения в практику строительства.
Основными видами окрасочной полимерной гидроизоляции являются: эпоксидные покрытия, покрытия на основе модифицированных эпоксидных смол — эпоксидно-дегтевые, эпокоидно-фурфуроловые, эпоксидно-фенольные и другие лакокрасочные покрытия. Устройство полимерной окрасочной гидроизоляции может осуществляться в заводских и построечных условиях.
Эпоксидные покрытия на основе чистых (He-модифицированных) смол в связи с низкой деформативной способностью, значительной усадкой, способствующей самопроизвольному отслоению пленки от основания или растрескиванию, в настоящее время применяются , сравнительно мало. Внутренние усадочные напряжения этих покрытий составляют примерно 25% прочности пленки на разрыв. Лучшими свойствами обладают покрытия, формирующиеся при температуре окружающей среды от 15 до 25° С.’
Эпоксидно-дегтевая гидроизоляции (ЭДГ) представляет собой водонепроницаемое и прочное покрытие толщиной 2—3 мм, образующееся после отверждения эпоксидно-дегтевой мастики.
Эпоксидно-дегтевую мастику приготовляют, смешивая эпоксидные диановые смолы ЭД-20 (или ЭД-16) и продукт переработки каменноугольного дегтя — пековый дистиллят — с введением наполнителя и без него. Жизнеспособность состава с введенным отвер-дителем при 20° С составляет 60 мин, при 40° С — 40 мин.
Усадка ЭДГ составляет 3—4%. ЭДГ не смерзается со льдом при обледенении сооружений. Гидроизоляцию стыков между сборными элементами и деформационных швов па сооружениях с эпокенд-но-дегтевым покрытием можно выполнять тиоколовыми герметика-ми (У-30 МЭС-5, У-ЗОМ, УТ-34 и др.). Покрытие следует засыпать грунтом не позже чем через 15—20 сут после окончания устройства гидроизоляции швов и не позднее 30 сут после нанесения гидроизоляции на конструкции.
Эпоксидно-фурановая гидроизоляция (F3O) — это водопроницаемое покрытие толщиной 2 мм, образующееся при отверждении нанесенного на поверхность состава из эпоксидной смолы, фурфуроло-ацетятного мономера (мономера ФА), отвердителя н на-пэлнителя. Физико-механические характеристики эпоксидно-фурано-вого .покрытия близки к характеристикам гидроизоляционных покрытий, выполненных из эпоксидной смолы. Максимальная объемная усадка эпоксидно-фураповых покрытий меньше по сравнению с покрытиями из немодифицированных эпоксидных смол и составляет 6%, линейная — около 2%. Многокомпонептпость и высокая токсичность, низкая трещиностойкость сформировавшихся покрытий являются теми недостатками, которые ограничивают возможности их широкого применения.
Покрытия на основе эпоксидных смол (ГЭФ.’ЭДГ и др.) можно устраивать как со стороны действия гидростатического напора, так и со стороны помещений. В последнем случае допустимый гидростатический напор должен быть не выше 20 м
Недостатками эпоксидных покрытий ЭДП являются их высокая жесткость, незначительная деформативность. В последнее время разработаны покрытия на основе эпоксидных диановых смол, модифицированных синтетическими каучуками, — эпоксидно-каучуковые. Каучук (например, карбоксилатный каучук СКН-10-1-4) вводят в количествах 100—200% массы эпоксидной смолы. Это способствует улучшению деформативных свойств с сохранением высоких гидроизоляционных свойств.
Полимерцементная гидроизоляция. Наиболее распространенной полимерцементной гидроизоляцией является цементно-латексная. Такая гидроизоляция обеспечивает защиту от проникания воды после нанесения не менее 5 слоев цементно-латсксной смеси. Общая толщина должна составлять не менее 2 мм. Для повышения прочности в местах перехода с горизонтальной поверхности на вертикальную, а также в местах над стыками между элементами сборных сооружений покрытие армируют полосами хло-риновой или капроновой ткани.
Области применения окрасочной гидроизоляции. Битумная — защита от капиллярной влаги; изоляция фундаментов, пароизоля-ция, грунтовка; изоляция металлических поверхностей. Изоляция монолитных трещиностойких конструкций (без деформационных швов) при напоре воды не выше 2 м и возможности периодического осмотра.
Блтумно-латексная и эластим — гидроизоляция подземных частей зданий ,и сооружений на деформируемых основаниях с расчетным раскрытием трещин до 1 мм, эксплуатируемых в условиях сезонного или кратковременного обводнения; гидроизоляция от воздействия агрессивных и производственных вод.
Битумно-наиритовая — то же, что и битумно-латексиая, но с раскрытием трещин изолируемых конструкций до 2 мм, а также конструкций, эксплуатируемых в условиях сезонного и постоянного обводнения.
Штукатурная изоляция эластим — защита сборных, сборно-мо-нолитпых и монолитных сооружений от капиллярного увлажнения и атмосферных вод, просачивающихся в грунт.
Битумно-этинолсная—изоляция монолитных трещиностойких конструкций (фундаментов, свай и др.), защищенных от света.
Эпоксидная и эпоксидно-фурановая изоляция трещиностойких конструкций подземных сооружений, эксплуатируемых в зоне постоянного обводнения, а также в агрессивных средах.
Эпоксидно-дегтевая — изоляция трещиностойких сборно-монолитных и монолитных сооружений и частей зданий, эксплуатируемых в зоне постоянного обводнения, высокой агрессии грунтовых вод, а также изоляция внешней поверхности опускных колодцев и кессонов, свай и шпунтов; защитная изоляция поверхностей железобетонных и асбестоцсмснтных элементов градирен и других сооружений, работающих в условиях переменного температурно-влажпостного режима; изоляция D промышленном и гражданском строительстве степ, полов и перекрытий помещений с повышенным температурно-влажиостцым режимом; изоляция плавательных бассейнов с пресной и морской водой, резервуаров химической пр мышленности. Может применяться для изоляции при заводском изготовлении сборных железобетонных и керамзитобетоиных конструкций.
Цементно-латексная — изоляция трещиностойких конструкций в промышленном и гражданском строительстве (стеи, подвалов), . эксплуатируемых в условиях сезонных или кратковременных обвод-» нений и гидростатического-напора не более 5 м.